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ABSTRACT 

Identifying common root causes of systematic defects in a short time is crucial for 

yield improvement.  Diagnosis driven yield analysis (DDYA) such as Root cause 

deconvolution (RCD) is a method to estimate root cause distribution by applying statistical 

analysis on volume diagnosis. By fixing identified common root causes, yield can be 

improved. 

With advanced technologies, smaller feature size and more complex fabrication 

processes for manufacturing VLSI semiconductor devices lead to more complicated failure 

mechanisms. Lack of domain knowledge of such failure mechanisms makes identifying 

the emerging root causes more and more difficult. These root causes include but are not 

limited to layout pattern (certain prone to fail layout shapes) and cell internal root causes. 

RCD has proved to have certain degree of success in previous work, however, these root 

causes are not included and pose a challenge for RCD. Furthermore, complex volume 

diagnosis brings difficulty in investigation on RCD. To overcome the above challenges to 

RCD, improvement based on better understanding of the method is desired.  

The first part of this dissertation proposes a card game model to create controllable 

diagnosis data which can be used to evaluate the effectiveness of DDYA techniques. 

Generally, each DDYA technique could have its own potential issues, which need to be 

evaluated for future improvement. However, due to limitation of real diagnosis data, it is 

difficult to, 1. Obtain diagnosis data with sufficient diversity and 2. Isolate certain issues 

and evaluate them separately. With card game model given correct statistical model 

parameters, impact of different diagnosis scenarios on RCD are evaluated. Overfitting 

problem from limited sample size is alleviated by the proposed cross validation method. 

In the second part of this dissertation, an enhanced RCD flow based on pre-extract 

layout patterns is proposed to identify layout pattern root causes. Prone to fail layout 

patterns are crucial factors for yield loss, but they normally have enormous number of types 
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which impact the effectiveness of RCD. Controlled experiment shows effectiveness of 

enhanced RCD on both layout pattern root causes and interconnect root causes after 

extending to layout pattern root causes. Test case from silicon data also validates the 

proposed flow. 

The last part of this dissertation addresses RCD extension to cell internal root 

causes. Due to limitation of domain knowledge in both diagnosis process and defect 

behavior, parameters of RCD model are not perfectly accurate. As RCD moves to identify 

cell internal root causes, such limitation become an unescapable challenge for RCD. Due 

to inherent characteristics of cell internal root cause, RCD including cell internal root cause 

faces more difficulty due to less accurate model parameters. Rather than enhancing domain 

knowledge, supervised learning for more accurate parameters based on training data are 

proposed to improve accuracy of RCD. Both controlled experiments and real silicon data 

shows that with parameters learned from supervised learning, accuracy of RCD with cell 

internal root cause are greatly improved. 
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PUBLIC ABSTRACT 

For manufacturing of VLSI semiconductor devices, acceptable and stable yield 

must be achieved in a short time before volume production. Yield learning is a procedure 

to identify root cause of defects which need to be fixed. Root cause deconvolution (RCD) 

is a yield learning method that estimates root cause distribution based on volume diagnosis 

data. RCD has proved to have certain degree of success in previous work.  

At advanced technology node, layout pattern (certain prone to fail layout shapes) 

and cell internal root causes (root cause of defect inside a library cell) have been main 

causes of yield loss in many cases. Improvements to RCD are needed to adapt to such new 

types of root causes. 

Improvements to RCD should be based on proper evaluation and understanding of 

its statistical model. However, volume diagnosis data is design dependent and difficult to 

have sufficient diversity, which brings difficulty in evaluation of the statistical model. We 

propose a card game model to create controllable diagnosis data with various scenarios. 

Using card game data, issues in RCD model can be separated and evaluated.  

We then propose an enhanced RCD flow to identify layout pattern root causes 

effectively. Lastly, we propose a supervised learning method to improve RCD accuracy 

including cell internal root causes. Due to inherent characteristic of cell internal root 

causes, inaccurate RCD model parameters bring challenges to RCD accuracy. Proposed 

supervised learning method learns a set of more accurate model parameters and improves 

RCD accuracy. 
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CHAPTER I 

INTRODUCTION 

1.1 Background and Motivation of DDYA 

Yield is defined as the percentage of good dies among all dies manufactured. It is 

an important factor in product profits. In the early stages of manufacturing a new product, 

when a new manufacturing process is introduced for an existing design, or when a new 

design is introduced to an existing manufacturing process, the first lot of manufactured 

devices usually has a yield lower than expected. When lower-than-expected yield occurs, 

yield engineers need to identify the defects, understand their root cause, and modify the 

design or the manufacturing process to improve the yield. Acceptable yield needs to be 

achieved before volume production begins and needs to be maintained during volume 

production. Due to decreasing time-to-market and time-to-volume constraints [37], a high 

and stable yield has obviously become the key factor of product profit in the semiconductor 

industry. 

To improve yield, firstly, the root causes of systematic yield loss need to be 

identified. The design or manufacture process then needs to be modified according to the 

nature of these root causes. With decreasing feature sizes and increasing complexity of 

fabrication processes for manufacturing VLSI semiconductor devices, more systematic 

defects occur at the advanced technology nodes. Product yield ramp up is mostly 

determined by how quickly systematic defects are identified and fixed. Identifying 

common root causes in a short time is crucial for yield improvement.  

Traditional yield learning methods such as physical failure analysis (PFA), inline 

inspection and test structure have been used to identify systematic root causes. However, 

these methods appear to be less effective in identifying root causes due to the design-

iteration process. For example, given the long times and expense of PFA, using PFA on a 

large number of failing devices to find systematic defects is becoming unfeasible.  
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For this reason, yield learning by appropriate statistical analysis on volume 

diagnosis reports (that is, a large amount of reports) has come into use as a way to 

automatically identify common physical defect features. This approach can reduce 

turnaround time and cost by speeding up the process of systematic defect identification. 

The identified root cause information can be used not only to improve yield analysis, but 

also to reduce PFA costs by focus on failing devices with systematic defects. Such an 

approach will be referred to below as diagnosis driven yield analysis (DDYA) in this thesis. 

Inherent ambiguity from diagnosis data is one major challenge DDYA needs to 

address. Among the existing DDYA techniques, Root Cause Deconvolution (RCD) [48] is 

a statistical method that addresses such ambiguity directly by estimating the underlying 

root cause distribution base on unsupervised learning from volume diagnosis data. 

1.2 Challenges for RCD 

Emerging new defect features: According to Moore’s law, the number of transistors 

that can be integrated on a chip of a given size will double approximately every 18 months. 

At advanced technology node, systematic defects caused by new design features become 

major yield limiting factors due to more complex manufacturing process, smaller feature 

size and more complicated failure mechanism. Those emerging defect features include, but 

are not limited to, layout pattern root cause and cell internal root causes. 

Layout pattern root cause refers to a specific hard-to-manufacture layout structure 

that becomes prone to fail. Such prone to fail features occur more and more frequently as 

feature size of the layout shrinks dramatically till smaller than lithography wavelength. 

How to identify such layout features is an open question. Also, the enormously large 

number of potential layout patterns to be considered for statistical analysis poses a 

challenge for statistical analysis.  

Cell internal root cause refers to cause of defect inside a standard library cell. At 

more advanced technology node, library cells require more process steps and more 
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complicated transistor structures. Also, to handle higher process variations, there is 

increasing use of custom designed cells. All these factors lead to a large number of 

manufacturing defects and systematic root cause inside library cells, which have more 

subtle defect behaviors. Due to the complicated structure of library cell and current limited 

domain knowledge of the defect behaviors, identifying cell internal root causes poses a 

challenge for RCD. 

RCD has been proven effective and has had a degree of success in previous work 

[44], [48], [49]; this existing work, however, does not consider prone-to-fail layout 

structures and cell internal root causes as candidate root causes. 

Limited and complex diagnosis data for DDYA: In reality, volume diagnosis data 

are not comprehensive, and are limited in size due to practical reasons. One of the reasons 

is that not all failing die are sent for diagnosis. For each die on a wafer, several tests are 

applied, and only those dies passing the previous test are then sent on for Automatic Test 

Pattern Generation (ATPG) scan testing and diagnosis. To investigate the effectiveness of 

not only RCD but also other DDYA techniques, we used the failure files of both silicon 

defects and simulated defects for experiments. However, due to complex nature of design 

and test patterns used, it was not easy to ensure that simulated defects and silicon defects 

can create diagnosis reports with sufficient diversity. Such constraints on both size and 

diversity of diagnosis data limited the thoroughness and potential usefulness of the present 

investigations on DDYA techniques. It is necessary to create controllable diagnosis reports 

with the desired diversity of scenarios in order to investigate and improve DDYA 

techniques, including RCD. 

To sum up, improvement and adaptation to new root causes are needed for RCD to 

overcome the challenges from emerging new root causes. Also, a vehicle with controllable 

diagnosis data for better understanding of not only RCD but general DDYA method would 

be beneficial for yield learning research. 
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1.3 Organization of Thesis 

The following chapters of this thesis are organized as follows.  

Chapter 2 first reviews the background and basic concept of defect, root cause and 

fault diagnosis. Then traditional yield learning methods and yield learning approaches 

using volume test data are brief discussed. Lastly, several DDYA techniques, including 

RCD, are reviewed. 

Chapter 3 describes the methodology of RCD. The details of RCD probability 

model are presented, and some challenges RCD might face are discussed. 

In Chapter 4, a card game model is proposed to create various controllable 

diagnosis data that can be used to evaluate the effectiveness of DDYA techniques and 

conduct investigation for improve DDYA techniques. With correct statistical model 

parameters and limited samples, card game model is used to evaluate the impact of root 

cause numbers, instance counts and correlation among root causes on RCD result. The 

effectiveness of RCD with limited samples is evaluated. Overfitting problem due to limited 

sample is alleviated by the proposed cross validation method. 

In Chapter 5, an enhanced RCD flow is proposed to handle layout shape related 

root causes. The advantages of the proposed RCD flow are discussed comparing to an 

existing method. Results of RCD from both controlled experiments and industrial silicon 

data validate the effectiveness of proposed flow.  

Chapter 6 addresses RCD extension to cell internal root causes. A supervised 

learning technique is proposed to improve the parameter estimation of the RCD model, and 

thereby increase the accuracy of the final RCD result. Both controlled experiments and real 

silicon data show that with learned parameters, the accuracy of RCD with cell internal root 

causes are greatly improved.  

Chapter 7 concludes the thesis and discusses future work. 

  



www.manaraa.com

5 
 

 

CHAPTER II 

REVIEW OF DIAGNOISIS AND DIAGNOSIS DRIVEN YIELD 

ANALYSIS 

In this chapter, we provide an overview of existing diagnosis techniques and 

diagnosis based yield learning methods. Section 2.1 explains some basic terminology and 

concepts. Section 2.2 reviews techniques in fault diagnosis. In section 2.3, a review of the 

traditional yield learning methods is presented. Section 2.4 compares the traditional 

methods of yield learning with volume diagnosis based yield learning and discusses the 

challenges associated with learning from volume diagnosis, before finally discussing and 

evaluating previous work on volume diagnosis based yield analysis. 

2.1 Defects and Physical Features 

2.1.1 Overview of Defect 

Defects: Physical defects of Integrated Circuit (IC) chips are the catastrophic 

deformation of physical structures on the layout of a manufactured die. Figure 2-1 [1] 

shows an example in which a “spot defect” caused the deformation. Possible catastrophic 

deformations include: break of a conducting path, an unintended short-circuit between 

active areas, and the unwanted appearance of an active or parasitic device[2]. Based on the 

source and the nature of their behavior, defects can be categorized into two types: random 

defects and systematic defects. In diagnosis context, a defect is also referred as a specific 

physical defect effect, as mentioned in Chapter 3. 

Sources of defect: During each step of the manufacturing process, many types of 

incidents or changing factors can lead to a defect that fails the die and therefore causes 

yield loss. Sources that can cause a defect and impact yield can include but are not limited 

to human errors, technology maturity, equipment failure, process variation (instability of 
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process parameters and material inhomogeneities), wafer environmental conditions, and 

tool set [3], [37]. 

 

Figure 2-1 Example of “spot defect” [1] 

2.1.2 Types of Defect 

Defect can be categorized by type of malformation, landing locations or 

characteristic of occurrence. Open defects and bridge defects are two basic types of 

malformations that can occur during chip fabrication. Possible scenarios are bridging 

between two neighboring signal lines that are too close, open interconnect of a net that is 

too narrow, open or bridge defects inside a library cell, and single vias. Via connects mental 

layers and a missing via or deformed via can cause open defects on layers. Defects can also 

be classified into two categories based on the defect location: a defect in a library cell is 

called a cell internal defect, and a defect on interconnecting wires is called an interconnect 

defect. 

Figure 2-2a shows images of a bridge defect [48] and open defect [14] at 

interconnect wire. Figure 2-2b [39], [41] shows different defect scenarios related to via. 
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Figure 2-2a Image of open [14] and bridge [48] defects 

 

Figure 2-2b Image of open defects related to via [39], [41] 

2.1.2.1 Systematic Defects and Impact to Yield Loss 

Systematic defects are those that occur repeatedly at different locations of the same 

design and have a common cause. Such causes can include but are not limited to tool 

excursions, design marginalities, design-process interactions, test issues, mask errors, and 
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parametric variations [42]. Fixing the common cause will eliminate occurrence of such a 

group of defects and improve yield significantly. 

In today’s technologies, as the size of physical features of design become smaller 

and smaller, manufacturing processes become more complex and much less predictable 

[4],[5]. At the point that the minimal feature size of a layout becomes smaller than the 

lithographic wavelength, certain layout features become hard to fabricate correctly and are 

more likely to cause failures than other features. This kind of prone-to-fail feature is called 

critical feature in some literature [43]. Besides limitations of lithography, improperly 

validated Design for Manufacture (DFM) rules can also lead to defects during the 

manufacturing process of a critical feature. Other systematics, such as parameter variation 

and antenna effects, have also been studied [42].  

Systematic defects caused by design-process iteration can be fixed by design 

changes, process changes, or multiple new masks [55]. For example, two neighboring nets 

that are too close to each other can cause a bridging defect. If there are 10 instances of this 

feature in the entire layout, any of them could be defective and fail a die. We need to change 

the minimal distance of two adjacent lines for only these 10 instances to avoid failing the 

die. Such a change requires much less effort than changing the width between every two 

adjacent lines. In this example, the distance between two adjacent lines of the 10 instances 

is considered the design feature of this systematic defect. In section 2.1.3, such system 

physical feature will be discussed in detail. 

2.1.2.2 Random Defects and Their Impact on Yield Loss 

Other than systematic defect, random defect is also a main reason a die fails. 

Random defects can be caused by different sources. One of them is random contamination 

particles. Random particles can cause bridge defect if they land between two nets, or open 

defect if they land on a net. Traditionally, this type of defect limited the yield and has been 

studied and modeled by critical area of the defect site. Historically it has been considered 
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the dominant yield loss mechanism [37] for high volume production. Critical area-based 

yield model could be based on either test structure data or production test data [6]. 

Distribution of random defects can be modeled by a distribution such as Poisson and 

Negative Binomial [7]. 

Eliminating random defects has a lower priority than eliminating systematic defects 

due to its cost and impact. For example, random defects due to contaminate particles can 

be controlled by cleaning the manufacturing environment and modifying the 

manufacturing setting or design. The former is done by ensuring regular cleaning and 

maintenance of the processing tools, chambers, and wafer containers [52]. It is difficult to 

remove all particles, but important to remove as many as possible. To eliminate random 

defects, every location of a layout need to be considered because each of them could be 

potentially affected. Comparing to eliminating systematic defects by fixing certain design 

features appearing in limited locations, it would be too expensive. 

2.1.3 Design Feature 

A design feature [40] is the characteristic of a cell, metal layer, via or layout shape. 

Library cells can be characterized by cell type, logic function, and drive strength. Features 

inside a library cell can also be characterized by their physical layout. Similarly, 

characteristics of interconnects include metal-via overlap, stacked/not, 

single/multiple/array, via layer, metal density, and metal length. A physical feature is the 

property of physical defects. In this thesis, we used “feature,” “physical feature” and “root 

cause” interchangeably. 

Sharma et al [39] gives a detailed description of design features leading to open 

defects, especially different scenarios of prone-to-fail vias. Keim et al [40] identifies all 

single vias as the source of open defects, and identifies 5 known layout features causing 

bridge defects, such as side-to-side and corner-to-corner. Schuermyer et al [41] provides 

an overview of design features with additional description.  
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Recently, as manufacturing processes have advanced, specific layout patterns in a 

design that are hard to fabricate have been identified as key causes of systematic defects 

[42], [43], [51], [54], [55], [58]. Layout shape can be characterized by pixel image of the 

entire shape, polygons or just center lines [51], [57]. Figure 2-3 shows images of a prone-

to-fail layout structure and defects caused by this structure [43]. 

 

Figure 2-3 Image of prone-to-fail layout structure and open defect caused by such 
structure [43] 

2.1.3.1 Extraction of Prone-to-fail Design 

Critical design features can be defined in different ways depending on the amount 

of information extracted from a layout. For example, in [50], a skeleton of nets is extracted 

in each layout snippet, and the author claims that the skeleton can capture all critical 

features that could cause a defect.  

Different tools and methods are applied to identify potential critical features. One 

method is lithographic simulation. In [40], lithographic simulation is performed on a 

layout, and potential shorts and opens in a standard cell are identified. In [57], hotspots 

with coordinates are identified by lithographic simulation as critical features. In the flow 

we proposed for layout shape related root causes in Chapter 5, features of layout shape are 
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defined in order to indicate certain layout physical structures that are prone to fail. These 

patterns can be exactly the same or similar, sharing some common features after 

transformation. The details of how such layout shape features are extracted are described 

in Chapter 5.2. 

2.2 Fault Diagnosis 

Fault diagnosis is a method for determining the cause of a failing die. During yield 

ramp up, physical failure analysis (PFA) relies on diagnosis results to provide possible 

locations of the defects. There are two main parts in fault diagnosis: scan chain diagnosis 

and logic diagnosis. Scan chain diagnosis aims to determine the causes of scan chain 

failure, while logic diagnosis, also called scan diagnosis [8], [9], [10], [11],[12],[13], deals 

with defects affecting the logic function of a design. Recently, diagnosis unitizing layout 

information  [14], [15], [16] and cell internal defect diagnosis[17], [18], [19], [20], [21], 

[22], [23], [24], [25] have provided physical information and helped PFA to narrow down 

possible areas of defect, thus reducing cost and turnaround time. Furthermore, volume 

diagnosis, which uses diagnosis results from large amounts of failing dies, has shown 

increasing promise in yield learning to identify and quantify the possible root causes of 

failing dies. In this section, we will give an overview of fault model, logic diagnosis, 

layout-aware diagnosis, cell-internal diagnosis and cell-aware diagnosis. The end of this 

section briefly discusses inherent ambiguity in fault diagnosis. 

2.2.1 Fault Model 

A fault is the representation of a physical defect. Fault models are representations 

of failure behaviors of a defect. Fault models can be distinguished by their effect into two 

types [8]: 

1. A logic fault affects the logic function of the circuit. 

2. A delay fault affects the operation speed of the circuit. 
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In our defect injection experiment, we are interested in bridge and open defects. We 

focus on models of bridge and open defects that affect the logic function. A short fault 

indicates an unwanted connection between two points, while an open fault indicates an 

unintentional break in a connection [8]. Their behaviors can be modeled as follows: 

1. Stuck-at-fault model  

A signal line that remains at a fixed low/high voltage is modeled as stuck at fault, 

denoted by s-a-0/1. One example of such a fault is when a short occurs between a signal 

line and the ground/power.  

2. Bridge fault model 

Shorts occurring between two signal lines are modeled as bridge faults. This type 

of defect can often be seen in the layout level when two nets are close to each other. The 

short usually behaves as a new logic function that produces an unwanted value that changes 

the destination of the two bridging lines. A bridge fault can be molded as a logic OR 

function or a logic AND function. This type of modeling is not always accurate.  

Dominant bridge models the situation when the driver of one signal line dominates 

the logic value of both signal lines. For example, if the signal lines A and B are shorted 

and the fault type is that A dominates B, then the value of both A and B are the same as the 

value of A. 

3. Open fault model  

An open defect occurring on a line will also affect any fan-out branch of that line. 

If a single stuck-at-fault model is applied for each line, then an open fault will be modeled 

as stuck at faults that occur at the same time on each of the fan-out branches. 

4. Cell aware fault model [26]:  

Defects inside library cells, which locate between transistors and interconnect 

inside gates, can be modeled in a similar way as defects outside cells, which locate at 

input/output of gates on interconnect wires. Stuck-at, stuck-open, resistor open or bridge 

are some of the models proposed. 
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A delay fault [27] causes excessive delay along a path, such that the total 

propagation delay fault falls outside the specific limit. A transition fault model [28] models 

the delay of signal transition from an input of a gate to the output. When the signal 0/1 of 

input is not given enough time to transit to 1/0 at output, transition fault is modeled as slow-

to-rise/slow-to-fall. A path-delay fault model [29] focus on modeling the cumulative 

propagation delay along a pre-defined critical signal path. 

2.2.2 Logic Diagnosis 

Logic diagnosis is a procedure to compare the test response of the logic part of a 

failing circuit with that of a good circuit, to analyze the faulty behavior based on a fault 

model, and finally to provide possible defect types and locations. There are two main 

approaches: cause-effect and effect-cause.  

Cause-effect diagnosis: In this approach, a look-up table is built by recording all 

possible faults and their test responses. To build the look-up table, the first step is to first 

specify possible fault models and candidate faults. Then a fault simulation is performed, 

and the possible test responses of a given test and the faults on-site are stored in the table. 

Having the observed test response of a failing circuit, one can find the matching 

recorded test response in a dictionary and look up its corresponding fault type and location. 

The most matched test response in the dictionary indicates that its corresponding fault type 

and location is most likely the actual defect.  

This approach requires an accurate fault model and is of limited practical value for 

the diagnosis of defects whose fault models are not considered in the table.  

Effect-cause diagnosis: This approach usually includes three steps: path tracing 

from failing output, fault simulation on potential fault sites, and ranking based on test 

response. Before the first step, a good machine fault simulation with a specific test is 

performed. The test responses of the simulation and the observation are compared. 

Mismatched outputs are identified. 
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Path tracing essentially partitions the circuit into different primary output fan-in 

cones by back-tracing from each mismatched output pin. Each cone where a mismatched 

output pin resides is considered as a potential fault cone. Therefore, after tracing back from 

the different failing outputs, the fault candidate should locate at the common area of all 

potential fault cones. Within the common area, there usually exists more than one possible 

fault site, each of which indicates the fault type and location. Another possible scenario is 

that there is no common region found after path tracing. Such an outcome implies that there 

could be multiple faults in the failing chip [27]. 

Fault simulation is then performed on these possible fault sites. Test responses for 

all fault sites are obtained and compared. Finally, all possible fault sites are ranked based 

on how well they match the observed test responses of the failing circuit.  

This approach is more time-consuming and costly because it needs to be applied 

individually for each failing chip, while cause-effect diagnosis involves only a one-time 

overhead cost to build the dictionary for different failing chips of the same design. 

2.2.3 Layout-aware Diagnosis 

Layout-aware diagnosis [14], [15], [16] is a logic level diagnosis with physical 

information that provides not only a logical explanation, but also layout information for 

each possible defect site. For each design, the physical layout information of all logical 

suspect candidates is extracted. This information basically indicates the design features that 

might cause the target suspect defect. Such features include but are not limited to size and 

type of metal layers, vias, cells and various layout shapes. Those logical suspect candidates 

that cannot be mapped to the layout will not be included in the result of diagnosis because 

it is physically impossible for them to cause a defect. For each suspect reported[15], [37], 

layout-aware diagnosis identifies the layout polygons (or defect bounding box [14]) around 

the suspect. Any predefined design feature is then listed as a possible root cause of this 

suspect, along with its X-Y coordinates.  
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Layout-aware diagnosis improves resolution of diagnosis by filtering out the 

physically impossible suspects [14], thereby reducing the size of the suspect list. Also, 

directly reporting design features such as layer type, cell type, and layout shape supports 

analysis for the derivation of the root cause by enabling more convenient access to the 

diagnosis data. Yield learning methods such as PFA and volume diagnosis analysis would 

be greatly benefited by incorporating layout information. 

2.2.4 Cell Internal Defect Diagnosis 

Traditional logic diagnosis is based mainly on stuck-at fault model and usually 

reports the most likely defect location at or between interconnecting wires connecting to a 

cell. However, this information is not enough to determine whether the real defect occurs 

on wires or inside the cell that a wire connects to. As feature sizes decrease and fabrication 

processes become more complicated, finding systematic defects occurring inside cells 

become essential for yield ramp up. Cell internal defect diagnosis targets to locate defects 

inside a cell. 

Previous work on cell internal defect diagnosis can be put into three categories: 

Gate-level based, excitation conditions extraction based, and simulation based cell-aware 

diagnosis. 

Gate-level diagnosis based: This approach [23], [24], [25] starts with modeling cell 

internal defect in transistor level, and then maps the transistor level defect into gate-level 

defects. On the translated gate-level design, traditional logic diagnosis techniques on gate 

level then are used to locate the most likely faulty gate and pinpoint the faulty transistor. 

The success of this approach depends on how well the cell internal defect is modeled. In 

general, this method is not sufficient for transistor level physical defects [20].  

Excitation conditions extraction based[17], [18], [19], [20]: This approach is based 

on the assumption that excitation of internal defect is highly related to the logic value of 

input pins [20]. There are two steps in this approach. In first step, conventional gate-level 
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diagnosis is applied to locate possible defective cells. In second step, excitation conditions 

of those possible defective cells are extracted based on the logic value on input pins of 

investigated cells. The failing excitation conditions are a combination of input logic value, 

which can activate and propagate the cell internal defects to output pins. Accordingly, 

passing excitation condition is a combination of input logic value that cannot activate or 

propagate the cell internal defects to output pins. With information of the determined 

excitation conditions, one can isolate a defective cell from interconnect defects by 

correlating the passing and failing condition [19], or even determine the actual defect inside 

the cell with SPICE or switch level simulation [18].  

The accuracy of locating defective cells and accuracy of extracted excitation 

conditions have a direct impact on the effectiveness on this approach. Sharma et al [19] 

proposed active excitation condition to improve accuracy of extracted excitation condition. 

Fan et al [20] further improved excitation condition extraction by tracking fault effect 

propagation paths. However, since traditional logic diagnosis usually uses the stuck-at fault 

model, difficulties can arise when multiple cycle patterns are present. To deal with this 

challenge, [20] proposed X-based simulation and suspect validation by simulating 

extracted excitation conditions.  

One disadvantage of work proposed in [20] for yield learning is that only the 

defective cell is located but not the defect location within the cell. When the real root cause 

is a certain layer or layout shape within cells among all cell types, it would be difficult to 

locate it.  

Simulation based (cell-aware diagnosis) [21], [22]: Tang et al [22] proposed a 

methodology to avoid inaccurate extraction on excitation conditions and alleviate the 

impact of stuck-at fault model by creating an accurate fault model based on analog 

simulation. The user-define fault models (UDFM) are created as follows: 1. Extract all 

physical defects from library cell layout. 2. Create fault model based on extracted physical 

defects. 3. Save both physical information and test condition for each UDFM fault. The 
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diagnosis algorithm is built on top of existing layout-aware diagnosis with extra steps. 

Based on simulation results for stuck-at fault based suspects, certain cell instances will be 

picked, and UDFM faults corresponding to those instances will be simulated explicitly. 

Following UDFM simulation, the suspect lists from both stuck-at fault based and UDFM 

fault-based simulations will be merged. At the end, the suspects that most closely match 

layout information, among both interconnect suspects outside cells and cell internal 

suspects, are reported. One benefit of the simulation-based fault model compared to the 

stuck-at fault model is that when a cell-internal defect behaves differently in two cycles, 

one can inject different fault values of that fault in different cycles. Also, each UDFM faults 

contains the layout information inside cells; therefore, investigating cell internal root 

causes for the purpose of yield learning become feasible. This is approach is termed cell-

aware diagnosis. The proposed work in Chapter 6 is built upon the RCD framework using 

cell-aware diagnosis. 

2.2.5 Diagnosis Ambiguity 

Terminology of Diagnosis Report: Typical logic diagnosis provides a list of ranked 

defect suspects for each report. A report represents a defect, and a suspect represents a 

potential defect candidate that could explain the behavior of failing chip. The suspect is 

also referred as physical defect of diagnosis. For layout-aware diagnosis, the physical 

feature associated with a suspect could be termed a design feature, critical design feature, 

or root cause. The terminology used in the proposed volume diagnosis model will be 

summarized in detail in Chapter 3 and illustrated with a graph. 

Metric of Diagnosis Performance: Resolution of diagnosis is a metric defined by 

the total number of defect candidates reported by a diagnosis tool [27]. Ideally the metric 

is 1, meaning only one defect site is reported. Another metric is accuracy, which indicates 

how often the target defect can be correctly called out by diagnosis. Although resolution 

and accuracy are both metrics for diagnostic performance, one doesn’t necessary imply 
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another. The main factor affecting diagnosis [61] is the matching of the fault model and 

the real physical defect.  

Diagnosis Ambiguity: Logic diagnosis is based on the logic description of a circuit 

and a fault, so it can only provide a logic-level description of a defect. Therefore, multiple 

faults that are logically equivalent cannot be distinguished. Each logically equivalent fault 

is possibly real, and there is not much that logic diagnosis can do at this point. This 

characteristic of logic diagnosis is called diagnostic ambiguity and is measured by 

resolution of diagnosis. Similarly, just as logic diagnosis cannot distinguish logically 

equivalent suspects, layout-aware diagnosis also cannot distinguish between physical 

suspects that have the same logic behavior, and thereby pin down the one true root cause 

among multiple design feature candidates associated with each physical defect. For 

example, it is not easy to distinguish all instances of potential physical bridges between a 

pair of nets [48]. 

Challenges in diagnosis performance for yield analysis: As we discussed earlier, 

the performance of logic diagnosis is evaluated in terms of accuracy and resolution. 

Layout-aware diagnosis is impacted by how design features are extracted, which impacts 

the root cause uncertainty. Improving accuracy and resolution is always a goal for 

diagnosis improvement. However, such ambiguity is still inevitable, and bring challenges 

in yield analysis based on both individual and volume diagnosis. Whichever method is 

applied should be able to address these issues. 

2.3 Yield Learning Method (Traditional, Non-volume 

Diagnosis Based) 

Historically, different yield learning methods have been applied to the industry 

yield ramp process. These methods, such as test chips, visual wafer maps, memory bitmaps, 

inline inspection, PFA, and special test structures for parameter evaluation [3], [30], [31], 

[32], [47], have been proven effective in different scenarios. Still, depending on defect 
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location distribution and root cause characteristics, these methods are facing challenges for 

the following reasons: 

1. Limited ability to pin down all root cause types. Not all failure mechanisms can be 

identified by these methods. Some methods (for instance, wafer history analysis) 

can only detect incidents caused by equipment. Especially for defects related to 

subtle design layout features, these methods (such as optical in-line inspection) are 

becoming less applicable.  

2. Limited ability to represent diverse layout geometry and all layers. Methods like 

memory bitmap and PFA can only be applied to a small portion of the layout.  

3. Limited ability to discover unknown root causes. Test structures need a predefined 

set of features and are not able to identify new features. 

4. Expensive and time-consuming. As more and more new defects cannot be 

identified by traditional methods, retest and PFA need to be applied. This process 

will take additional days or weeks, a requirement which is not acceptable due to 

short time-to-market cycles. Also, PFA is very expensive.  

5. Relying on results from other yield learning methods. PFA can be used as an 

example. PFA is effective because it can observe the defect site on a layout directly. 

But this also means it is intrusive and requires the defect site to be accurately 

located. Other yield learning methods, such as volume diagnosis analysis, are 

needed to reduce the ambiguity of the diagnosis and aid in PFA. 

A brief description of various yield learning methods, and their pros and cons 

compared to yield learning using volume diagnosis, will be given in the following 

subsections. 

2.3.1 Memory Based Analysis 

Memory based analysis has been used to identify defects in a memory part (Static 

Random-Access Memory, Dynamic Random-Access Memory). A memory bitmap [36] is 
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created to record the failure of a memory part after a series of read and write operations [3] 

are performed. By analyzing the bitmap, a failure analyst can easily pinpoint a physical 

defect [33]. This method is effective in memory parts of which the structure is regular, but 

cannot handle defect scenarios in more random and complex layout geometry across all 

layers. 

2.3.2 Analysis of Wafer History 

Wafer history analysis uses fabrication process data to find a common attribute for 

the affected failing die [39]. This method focuses on identifying the fabrication process or 

fabrication equipment that caused the failure. However, for failure mechanisms such as 

systematic critical layout features it become less effective. 

2.3.3 Inline Defect Inspection 

Inline inspection [3], [33] collects abnormal data during the wafer manufacturing 

process. These data are obtained by scanning one layer of the wafer. In the yield learning 

process, different tests will be applied sequentially. Usually after the failure of first test of 

inline inspection, a retest is needed for failure analyses. However, one has to wait until the 

IC is packaged and assembled before one can perform the retest. Days or weeks may pass 

before the retest can be performed, leading to a long turnaround time. Additionally, optical 

inspection is unable to detect subtle layout features. Therefore, this process alone is not 

suitable for the current product and market. However, combining inline inspection with 

layout analysis [34], [35] can shorten turnaround time and function as a supplement source 

in identifying defects when diagnosis resolution is low. Desineni et al [55], by overlaying 

defects from inline inspection and layout, identified defects located in a hard-to-diagnose 

Intellectual Property (IP) core. 
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2.3.4 Test Chip 

Building a test chip is [40] highly effective, but only feasible on a small sample of 

defective parts. The cost of building a test chip can be prohibitive compared to using 

production IC for learning. 

2.3.5 Test Structures 

Test structures[4], [37], [51], [52] are special layout structures such as via chains, 

comb and serpentine structures, and densely populated lines. They are designed to extract 

information about specific critical design features during the manufacture process. Test 

structures are designed to be sensitive only to specific design features, and therefore they 

are required to have prior knowledge of the targeted root cause for each type of test 

structure. Once a wafer demonstrates low yield, information about target features, such as 

size, location and feature failure rate, can be collected immediately. One example [37] is a 

via chain used to stress a single via feature. By analyzing information regarding the set of 

potential root causes, action can be taken accordingly. Yield learning by test structure is 

simple, fast and accurate for specific features.  

However, test structures are less effective for systematic defects caused by irregular 

prone-to-fail layout structures. Such features are design-dependent and can be randomly 

distributed in a layout. Therefore, for a new design, there could be many unknown features 

which cannot be tested with test structures. Also, test structures are relegated to the wafer 

scribe lines [52], or limited to a small number of wafer lots, and are small in size. Therefore, 

the sample resulting from such a test is not likely to represent the failure distribution of the 

whole layout. Lastly [37], using test structures assumes that the targeted single root cause 

triggers the failure each time and gives a theoretical upper bound of its failure rate. 

2.3.6 PFA 

Physical Failure Analysis (PFA) is applied to manufactured wafers with low yield. 

The procedure starts by selecting a die from the wafer suffering unexpected low yield. This 
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die is then sent to yield engineers for physical failure analysis. A potential defect location 

on the failing chip is exposed, and an image of the potential defect site is taken by one of 

various methods (e.g., optical microscopy, scanning electron microscopy (SEM), and 

transmission electron microscopy [TEM]). From the image, yield engineers are able to 

directly view possible physical layout deformations. If a physical layout deformation has 

occurred, the chip will be sent to experts. The result of PFA from different chips can differ, 

but if a similar result is obtained from multiple chips, a group of experts can then decide if 

this is the true systematic root cause.  

PFA is an effective way to identify systematic critical features of design, but it is 

also very slow and expensive because of the reliance on failure analysis and a Subject 

Matter Expert (SME) [43]. 

During the procedure, several decisions need to be made: which typical die to pick 

in the wafer, which suspect is most likely truly defective, and which root cause is the true 

cause. Rather than randomly choosing one, engineers can use fault diagnosis and other 

yield-learning techniques to make the above decision. 

The die selected should be typical and best represent the systematic failure 

mechanism. A spatial yield signature [39] on a wafer map of failing dies can help engineers 

to choose the target die. Huisman et al [62] helps pick the target chip by identifying a 

cluster of chips that represent a potential systematic root cause.  

Fault diagnosis provides a list of potential defect locations and root causes. A PFA 

engineer can then bring the image of the defect site to a group of experts and let them 

decide which possible root cause really is the cause of the defect. If the location exposed 

happens not to be defective, another location will be selected for a new round of failure 

analysis. However, the increasing damage of deconstructive failure analysis processes 

requires a higher resolution of diagnosis and more accurate root cause identification 

methods. Layout-aware diagnosis [14], [15], [16] helps improve the resolution of 

diagnosis, and volume diagnosis has been used to provide information about systematic 
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root causes for a population of failing chips. The approach described by Benware et al [48] 

is one where root cause probability distributions are estimated by analyzing volume 

diagnosis data.  

Lastly, due to budget and time-to-market requirements, PFA can analyze only a 

small portion of all failing dies. If two underlying systematic defects exist in the population 

of failing chips, it is possible that the dies submitted for failure analysis contain defects 

caused by only one of the two root causes. In such cases, the PFA result is misleading 

because of its limited sample size. A method that could identify unknown failure 

mechanisms in less time and based on the overall population of failing chips would benefit 

the field. 

2.4 Yield Learning Method (Volume Diagnosis Data 

Based) 

2.4.1 Volume Diagnosis Based Analysis 

2.4.1.1 Overview 

Volume diagnosis is a process in which diagnosis is performed on every individual 

failing die of a large numbers of failing dies, which are drawn typically from several tens 

of wafer lots [42].Volume diagnosis analysis applies statistical analysis to the diagnosis 

results from large numbers of failing dies and then, through different statistical methods, 

derives an overview of the defect root cause. Diagnosis may refer to logic diagnosis, scan 

chain diagnosis, or any other diagnostic technique that attempts to localize the defects [42]. 

Volume diagnosis based yield learning can be applied to different stages of the 

yield ramp procedure. First, yield loss from potential failures caused by random spot 

defects is modeled by certain yield model-for example, a yield model based on critical area. 

Then the presence of systematic defects is revealed by the deviation of wafer final test 

(WFT) yields from those predicted by yield models based on IC critical area[2]. These 
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underlying systematic defects need to be discovered, identified, qualified, ranked, and then 

fixed. Next, in high volume production, continued yield monitoring is required in case of 

unexpected yield drop that might be caused by a drifting litho process [40] or new 

systematic defects caused by previous modifications.  

In the following section, we will first review the advantages of volume diagnosis 

based yield learning over traditional yield learning methods. Difficulties inherent to 

volume diagnosis are then discussed. Lastly, several previous works are reviewed. 

2.4.1.2 Advantages 

As discussed above, significant differences exist between volume diagnosis based 

yield analysis and various other yield learning techniques described in the previous section. 

Overall, volume diagnosis based analysis is cost efficient, allows short turn-around time, 

is able to identify previously unknown yield loss mechanisms, and is naturally more 

representative of complex layouts over all layers. It can also work as a supplement to an 

existing method such as PFA.  

Compared to analysis using a failure signature [42], [55]: Yield learning methods 

that analyze the signature of failing chips are based on the assumption that the same 

underlying root cause will produce repeating failure signatures. Volume diagnosis data, 

however, can handle a case in which one root cause could have resulted in different 

signatures.  

Compared to memory based analysis: All of the process layers and the diverse 

layout geometry can be represented in the diagnosis of random logic [40].  

Compared to analysis using a test structure[4], [51]: Statistical analysis of volume 

diagnosis is more cost-effective and less intrusive compared to using a test structure. 

Volume diagnosis data is able to represent the overall geometric diversity of a layout, while 

a test structure can be applied to only a small region of a die. Therefore, for identification 

of systematic defects caused by a prone-to-fail physical structure, using a test structure 
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could b e less effective than volume diagnosis. Lastly, volume diagnosis can identify the 

unknown root cause of the failure of a new design, while a test structure, because it needs 

an existing set of known root causes, cannot be applied on such a feature. A study by 

Kruseman et al [4] shows an example where two systematic defects are not detected by test 

structures.  

Compared to PFA based on individual diagnosis report: 

1. Helping PFA to reduce diagnosis ambiguity and increase resolution [47], 

[48], [50]: Information provided to PFA by the diagnosis of an individual 

die suffers from inherent ambiguity and therefore affects the turnaround 

time of PFA. Statistical analysis on volume diagnosis helps to minimize the 

ambiguity by providing an overview of the underlying root cause to aid 

Failure Analysis (FA) experts identify the true root case.  

2. Independent of PFA: Besides aiding PFA, volume diagnosis can also act as 

an independent learning approach in identifying the root cause [48], [50], 

[51], [62]. PFA could then be used as an optional next step in validating the 

statistical analysis’ results. 

2.4.1.3 Challenges 

In the following section, potential issues of volume diagnosis based analysis are 

discussed. These issues pose a challenge for yield learning. 

1. Ambiguity and uncertainty inherent in diagnosis data: As mentioned in section 

2.2.5, a defect could trigger multiple faults that are logic-equivalent to each other. 

Such ambiguity is inevitable with current diagnosis technology. This ambiguity is 

also the main reason [39] that naïve analysis methods such as simply adding up all 

the features in diagnosis results would result in misleading conclusions. Root cause 

uncertainty from layout-aware diagnosis brings out the issues of correlated root 

causes. In layout-aware diagnosis, a suspect signal line is mapped to a net in the 
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physical layout, which might be associated with several different design 

features/root causes. Presumably the design features should be considered 

independent of one another, and each of them can be considered an individual 

source of the defect. A pair or a group of correlated features would be called out 

together even when only one of them causes a defect. This is a challenge for the 

statistical analysis of volume diagnosis.  

2. Limited diagnosis data: Volume diagnosis data is limited in size due to practical 

reason in reality.  One of the reason is that not all failing die are sent for diagnosis. 

For each die on a wafer, several tests are applied, and only those dies passing the 

previous test are then sent on for Automatic Test Pattern Generation (ATPG) scan 

testing. Therefore, volume diagnosis data cannot represent the real overall failure 

distribution of whole wafer, and might lead to misleading conclusions. Volume 

diagnosis cannot represent the real failure distribution of wafers [44]. When sample 

size is limited, its distribution may not always accurately represent the original 

distributed data. This potential for biased data poses a challenge for statistical 

learning. 

2.4.2 Previous Work 

Volume diagnosis based analysis [37-56, 58-66] can be applied to different stages 

of yield ramp-up and serves different purposes, such as identification and quantification of 

an existing critical feature[37-42, 47, 48], identification of an unknown systematic feature 

[43], [51], [62], validation and calibration of DFM rules [43], [63], defect density and 

distribution estimation for a random defect [64], and yield monitoring [40], [61]. In this 

work, these approaches are all referred as diagnosis driven yield analysis (DDYA). In this 

section, we will focus on reviewing DDYA techniques that automatically identify common 

physical defect features such that yield can be improved by fixing such common physical 

defect features. These methods aim to obtain root cause information of defect, based on 
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which one can identify and quantify root cause impact on yield loss. The root cause 

information of defects thus obtained can be categorized as following: 1. Feature failure rate 

(FFR) estimation [37-46]; 2. Feature/root cause probability [47], [48]; 3. Defect 

distribution estimation [50]; and 4. Layout shape feature estimation [34], [42], [66], [51-

60]. 

2.4.2.1 Feature Failure Rate Estimation 

Feature failure rate estimation refers to a method of identifying and quantifying root 

causes by estimating feature failure rate (FFR). Feature Failure Rate (FFR) is defined as 

the number of defective features divided by the total number of manufactured features. It 

is a metric to estimate how often a feature fails for a given population, often measured in 

Parts Per Million (PPM) and Parts Per Billion (PPB). FFR is a frequently used metric in 

volume diagnosis analysis. Each feature is a possible defect root cause here. A possible 

defective feature is described in some literature as a “feature hit” [42], defined as a feature 

called out by diagnosis. For each such feature, the chance of failure depends on the instance 

count and the total feature hits in the population. Total feature manufactured is also referred 

to as occurrence of this feature [47]. Structure test fail data can also be used to calculate 

FFR [41]. 

General procedure of FFR estimation: For root cause identification, the general 

procedure usually starts with choosing the interesting features set or set of known factors 

limiting yield, then calculating FFR, performing statistical analysis by ranking or 

comparison between the observed result and the expected FFR, and identifying the outlier 

or statistically significant feature for further failure analysis. In the rest of this subsection, 

previous approaches for each step are reviewed.  

Feature (root cause) choice: Many approaches to identification and qualification 

start with a pre-defined root cause list. Extracted physical layout features based on DFM 

rules are defined as candidate root causes in [38], [39]. Desineni et al [42] built an adaptive 
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table of possible root causes based on previous experience, and this table will be updated 

with new found features from feedback of FA. Different than [38], [39], [47], [51], design 

features such as geometric properties, the antenna characteristics of interconnect nets, and 

power level are all included in the adaptive table. In a case study, antenna technology 

ground rules, which are designed to avoid a charging-related defect that was not visible to 

inline wafer inspection, are refined.  

FFR calculation (how to calculate FFR): FFR is traditionally estimated by using 

test structures, which give fast and accurate feedback but cannot handle unknown critical 

features. For volume diagnosis based analysis, FFR can be calculated using information 

extracted from layout-aware volume diagnosis, by which all suspect features can be 

estimated even if it is not validated by PFA beforehand. This form of analysis also can 

expand the set of candidate critical features and could possibly identify unknown 

systematic critical features. Malik et al [37], after comparing the FFR derived from volume 

diagnosis and test structures, concludes that volume diagnosis could be an alternative 

source for FFR estimation. It is also proposed that FFR and count of features together can 

quantify yield loss, which allows quantified prioritization of critical features on the design. 

The FFR estimation is based on scan diagnostics data, which was shown to be empirically 

comparable to those estimated from test structures. However, ambiguity issues from logic 

level diagnosis, as well as the uncertainty from layout-aware diagnosis, will need to be 

addressed in FFR calculation. 

Other than direct calculation based on feature count, failure rate can be calculated 

based on some conceptual metric that reflects impacts on yield. Recent studies [38], [39] 

chose diagnosed net count (the number of a specific net being called out in diagnosis) as 

the metric for the impact from a design feature (open metal and via on layer), which is 

basically the same concept as FFR. The diagnosed net counts are calculated per net group, 

a procedure which is intended to reduce ambiguity. In [41], failure signatures, which are 

derived based on different assumptions of possible systematic failure mechanisms, are used 
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as the metric. In one example, the failure rate of the diagnosed cell type is used as the 

failure signature. In [43], DFM hits are used for FFR calculation. Work in [44] used 

probability results from RCD to calculate failure rate. 

Analysis of FFR for yield learning (Ranking and Comparing with Expectation): 

FFR is often used to identify root causes by quantifying the impact to yield loss from each 

feature and then ranking those features [37], [40], [41], [42]. Ranking the pre-extracted 

feature [40] is a straightforward measurement for identifying root cause, continual yield 

modeling, and validation and calibration of features. Ranking features by FFR also 

provides information on the selection of dies or identify outliers. The prediction model 

parameterized by FFR in [40] can point to new (previously unknown) systematic yield 

limiters when such cases result in a mismatch between the predicted behavior and the 

observed behavior. Based on the mismatch, outliers among all failing dies can be identified. 

Such dies are good representatives of the discrepancies between reality and what is 

currently known. They therefore become ideal candidates for PFA to locate unknown 

systematic root causes. In this situation, the observed FFR of a systematic defect is assumed 

to be much higher than the expectation. This outlier usually can be shown by visualization 

of the FFR, along with total feature count in a curve or pareto [40], [41].  

With estimated FFR, another way to identify the abnormality is by comparing with 

observation and expectation. Generally, observed data is obtained directly from volume 

diagnosis results of failing ICs or the defect injection experiment [39], [47]. In [38], [39], 

the expected diagnosis noise is modeled as being distributed throughout each net group 

evenly [39] or proportionally to the number of total fan-outs of nets in that group [38]. In 

[41], failing chip populations are divided into two groups of approximately the same size 

by process parameters (time, etc.). One of the groups is considered “observation” and the 

other “expectation.” The failure behaviors of these two groups are compared, and it is 

concluded that if a systematic failure mechanism exists in the original population, then its 

failure signature related to that systematic failure mechanism would show a significant 
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difference compared to the other failure signature. This method of comparing failure 

behavior assumes that if there are only random defects in a population, then its 

subpopulations would be affected equally. Therefore, the existence of any systematic 

failure mechanisms could be identified by their failure signatures. One possible weakness 

in the assumption is that a layout-related systematic failure mechanism is distributed 

randomly all over a die, and therefore the failure signature of that mechanisms in multiple 

subpopulations could be similar to each other.  

In [42], an adaptive table of critical features is built based on previous experience. 

These candidate features are then compared with features called out by diagnosis. If a 

feature is proven to negatively affect the yield, the FFR is calculated for such a feature to 

quantify its yield impact. If a feature in the diagnosis data does not appear in the adaptive 

table, PFA is needed for validation, and the table will then be updated with the new-found 

feature.  

Statistical analysis in FFR estimation: Different statistical analysis techniques are 

practiced in the FFR estimation.  

In [37], FFR is calculated with feature count information based on yield model 

assuming Poisson distribution of defects. In [38], [39], expectation of how the failing chips 

will behave with existence of one root cause is generated by null hypothesis. Comparing 

with actual “observed” data, a one-sided chi-squared test is applied to disprove each one 

of the candidate root causes. When a sole root cause cannot be disproved, it is considered 

as the dominant root cause. In [43], Pearson’s cumulative chi-squared test statistic is used 

to calculate the error between the “expected” populations (whole wafer) and “observed” 

populations (different wafer zones). This error is an indicator of how close estimated FFR 

is to true FFR. In [40], a probability model is built based on the assumption that there is no 

correlation between any two features and that each feature causes only one defect. Initially, 

the failure rate of each feature is assumed to be equal. An iterative method is used to 
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estimate fail rates by finding a convergence between expected and calculated number of 

failure for each type.  

Assumption for ambiguity: To handle diagnosis ambiguity, several assumptions are 

set for the above methods.  

In [37], [42], FFR is estimated based on the yield model assumption that if a single 

feature is called out by diagnosis, this feature must be the root cause of the defect and this 

defect must cause the die failure. Due to diagnosis ambiguity, a feature could be called out 

even if it does not cause the failure. Thus, this estimation of yield loss per critical feature 

based on this assumption is actually an upper bound. Work presented in [38], [39] are based 

on the assumption that there is only one dominant root cause. This assumption is not 

applicable for all cases, because in real life, defects could be caused by multiple root causes. 

Also, the impact from the sole root cause cannot be properly quantified. Another 

assumption in [38], [39] is that features with low instance counts will not be considered as 

potential root cause. The reason for that is these rarely occurring features might lead to an 

unreliable result in statistical analysis [39]. Excluding features with low instance counts 

could be considered as a filtering step for an outlier in the data set.  

Correlated features are considered as outcome of diagnosis ambiguity. Sharma et 

al [38], [39] uses a net group to amplify the difference of correlated features, and [40] 

proposes the possible solution of combining two correlated feature into one. 

Challenge and Limitation: The works discussed above have shown a certain degree 

of success which is validated by their experiment results. However, diagnosis ambiguity 

and root cause uncertainty of DDYA are all handled in a way that relies on certain 

assumptions which place limitations on possible diagnosis behavior and defect scenarios. 

With such limitations these methods could be insufficient to handle real scenarios in silicon 

data at advanced technology nodes. Other than heuristics applied under different 

assumptions, a more systematic approach is needed. 
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2.4.2.2 Feature/Root Cause Probability Estimation 

As mentioned above, feature failure rate defined by instance occurrence and total 

count suffers from diagnosis ambiguity and root cause uncertainty. The resulting estimates 

provide an upper bound of the failure rate, which could mislead the identification and 

quantification. Feature failure probability [47], together with an iterative algorithm, is 

proposed to address the ambiguity problem. Estimation of feature failure probability is 

proposed to provide more information on which features are more likely to fail. This 

measurement straightforwardly filters out unreal diagnosis callout. 

In [47], feature failure probability is estimated based on volume diagnosis, with a 

general assumption that different features fail independently. For each fail die, two events 

are defined: A: One feature instance is the only defect of the die. B: At least one feature 

instance causing the defective die. By enumerating all possibilities, conditional probability 

of one feature being the real defect root cause given observed diagnosis reports is computed 

and failure probability of each feature is computed based on the conditional probability. 

This approach inherently avoids the presumption of FFR that each feature instance is 

treated the same, instead giving a probability interpretation for each instance. Based on the 

feature failure probability, further analysis such as identifying systematic root cause and 

ranking suspects can be applied. 

Following [47], RCD [48] is proposed to also find the probability distribution of 

feature failure/root cause. It is under a constraint that the sum of all features’ probabilities 

needs to be 1. This constraint comes from the understanding that each feature/root cause 

contributes to a failing population by certain probability and triggering the population all 

together. Rather than using relative frequency to calculate conditional probability [47], this 

approach proposed a Bayesian belief network for volume diagnosis. Based on this Bayesian 

net, each feature, and each instance of the same feature, are modeled individually based on 

diagnosis reports and feature characteristics extracted from the design. We do not need 

make assumptions about the failing population, such as the existence of only one 
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dominating root cause existing. Most importantly, diagnosis ambiguity and root cause 

uncertainty are handled using a probability perspective, so statistically related techniques 

can be applied to this framework for the purpose of future improvement. Our work in this 

thesis is built upon RCD, and details of the method will be discussed in Chapter 3. 

2.4.2.3 Defect Probability Estimation 

Similarly, rather than finding feature probability distribution, some researchers 

assume that the probability distribution of defect types is also useful. This distribution 

essentially describes the possibility of each defect type occurring in the whole population 

given information about the defect behavior for each defect type. In [50], three types of 

defects are discussed: open, bridge and cell. The defect behavior of different defect types 

is modeled by a subset of signal lines that activate the possible defect sites. Since one defect 

behavior could possibly result in more than one defect type, which leads to undesired 

ambiguity, an iterative algorithm is also applied to reduce such ambiguity. Prior knowledge 

of defect behavior is needed for the expectation step and needs to be collected from the 

volume diagnosis results. One drawback of this approach is that the probability of a defect 

behavior given a certain defect type is obtained from the PFA finding. The accuracy of 

results relies on the availability of defect behavior distribution from PFA, which could be 

limited when PFA information is limited. Also, defect type is logic level description of 

behavior of real defect. To order to fix the cause of yield loss, we might still need to further 

investigate which root cause is the yield limiting factor, even given a defect probability 

distribution. 

2.4.2.4 Layout Shape Feature Identification 

Layout shape related features [51-60, 34, 42, and 43] have been an emerging source 

for yield loss as the feature size of design gets close to the lithographic wavelength. 

Investigating such features could also help validation and updating of DFM rules. 

Depending on design and process, such layout shape features could be unknown for PFA. 
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Layout shape feature identification usually need solve two issues: 1. How to extract feature 

of layout shape; 2. How to reduce diagnosis ambiguity to identify the “defective” feature. 

Several works [34], [57], [58], [59], [60] have been conducted to extract the layout feature 

all-over design and apply different analysis to identify layout shape features. 

A clustering based method [51], [52], [53], [54] is proposed to automatically 

identify prone-to-fail layout features. Firstly, layout features are extracted from volume 

diagnosis with layout information. A layout snippet is defined as an area containing the 

features of a suspect net and the nets in its vicinity. Those features of a certain layout shape 

are represented as a skeleton of the layout snippet image. Then clustering of layout snippet 

is performed in two stage on an extracted snippet images or their representatives. It is 

expected that each cluster will have common features that are prone to fail. Those extracted 

features can be validated by lithographic simulation or PFA. 

There are several issues with this approach: First, this method could help for SEM 

review, but still requires a failure analysis expert’s judgment to pick a snippet from among 

all others in a cluster. Also, this work does not address the ambiguity of diagnosis. All the 

layout shapes called out by diagnosis will be included in the clustering process. 

Furthermore, this method cannot quantify the impact of each feature. Lastly, though it is 

designed to identify unknown layout features, the extracted layout features are still limited 

by how the layout information is extracted. The feature extracted for clustering is based on 

the center line of the layout shape, so it presumably assumes that the width of the net will 

not be a critical feature, an assumption which might not always be true. Also, for two 

identical shape with some shifting, this method considered them as having different 

features, which is not correct. In Chapter 5, an enhanced RCD flow with automatic layout 

pattern extraction is proposed to address both extraction issues and ambiguity issues. 



www.manaraa.com

35 
 

 

2.4.3 Summary 

Volume diagnosis based statistical analysis methods have increasingly contributed 

to yield learning. All the previous work discussed above have had a certain degree of 

success in finding ways to identify error causes. However, the inherent ambiguity and 

uncertainty issues have not been properly addressed in a systematic fashion in previous 

studies.  

In this thesis, our proposed work is based on a DDYA method called Root Cause 

Deconvolution (RCD), which reduces ambiguity and uncertainty by learning a root cause 

probability distribution. RCD is a statistical learning method on volume diagnosis data 

from scan diagnosis reports, and is proposed to describe the dependence between a defect 

root cause and a real defect using Bayes probability model. In Chapter 3, the RCD model 

[48], [77] will be explained in detail. An enhanced RCD flow [78] for layout pattern 

identification is also presented in Chapter 5; the proposed work is compared to existing 

work [51], [53], [54], and its advantages are discussed. Lastly, in Chapter 6, improvement 

on RCD for better model parameter is presented. 
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CHAPTER III 

STATISTICAL MODEL OF RCD 

In this chapter, the DDYA method we investigate, Root Cause Deconvolution 

(RCD) [48], [77], is described and explained. The work discussed in the following chapters 

of this thesis is built around the RCD model described below. 

3.1 Background and Objective  

RCD [48] is a statistical method used to determine the probability distribution of 

failure root causes by mining volume diagnosis data.  

Diagnosis ambiguity and root cause uncertainty: Volume diagnosis is a set of 

diagnosis reports, each of which contains the analyzed information based on failure 

behavior of a failing die observed on the tester. Based on defective behavior observed, 

there could be more than one logic fault reported for causing observed failure behavior, 

more than one physical defect triggering the logic fault, and more than one root cause 

associated with that physical defect. Therefore, for one observed defect behavior, multiple 

root causes may be reported as responsible.  

Probability distribution of root cause: A root cause distribution is a probability 

distribution of all possible root causes responsible for generating the population of failing 

dies. Each root cause has a certain probability of being the real root cause, given the 

diagnosis report. Likewise, a group of diagnosis reports can be produced due to a number 

of root causes, with an associated probability for each root cause. In our work, a root cause 

distribution refers to a vector of probabilities, where the nth entry is equal to the probability 

of the nth root cause. The sum of all entries in this vector is one. The probability of one root 

cause in a population indicates how many dies in the population failed due to defects caused 

by this root cause. Root causes with higher probability are responsible for generating more 

diagnosis reports. Root cause distribution of whole pollution throughout a whole 
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population shows which candidate root causes may fail the die and how many failing dies 

each root cause is responsible for.  

Root cause distribution can be used to identify the root causes of failing dies and 

quantify the impact of each root cause on the yield loss. Furthermore, it can also help FPA 

to pick dies and narrow the scope of possible defect sites. In the following sections, we will 

first describe the problem RCD solves in general terms, and then present the procedures 

for deriving an optimal probability distribution of root causes given the information from 

volume diagnosis in RCD. 

3.2 Motivation and Problem Description 

Ideally, if a diagnosis result can pinpoint only one potential defect location and only 

one root cause of a defective die, the probability that it is the real root cause and real defect 

location given the observed failure behavior is 100%. In this scenario, the root cause 

distribution of a large number of manufactured dies is unique and can be obtained by 

simply summing up the occurrences of each root cause reported by the diagnosis and 

normalizing that by the number of failing dies. If each root cause can be considered a source 

of the observed defects, this distribution obtained by normalized sum is the only one that 

can generate the observed diagnosis results.  

In reality, each diagnosis report is usually associated with more than one root cause. 

So possibly more than one possible root cause distributions can trigger the given diagnosis 

results. One extreme example is that if each of the failing dies in population is reported to 

have two possible root causes (root cause A and root cause B), possible root cause 

distributions generating this population and each failing die could be 100% root cause A, 

100% root cause B, or any probability distributions including both root cause A and root 

cause B. The problem then is how to identify the underlying root cause distribution among 

all possibilities for the whole population. On the other hand, without further information, 

we cannot tell whether a failing die is caused by root cause A or root cause B by only 
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looking at the die itself. It is expected that information about every other individual failing 

die obtained from rest of the population would help to distinguish root cause A and B. Root 

cause distribution is expected to extract such diagnosis information from each failing die 

and provide guidance to identify the contribution from each root cause to either the whole 

population or an individual die.  

The problem of root cause probability distribution can be categorized as an existing 

problem: Parameter estimation of Mixture model [67]. A typical finite-dimensional 

mixture model is a hierarchical model composed of several individual components of 

distribution. Each component is associated with a component weight, which is a 

probability. All component weights sum to 1. Observed data points are distributed 

according to the mixture of all component distributions. For each observed data point, in 

mixture distribution, we want to define assignment of data points to specific components 

of the mixture model [68]. The assignment here refers to component weight or mixture 

coefficients, which indicate how much each component is responsible for observed random 

variables. In [68], mixture of Gaussian distributions is used as an example to explain 

estimation of the mixture coefficients. Starting with mixture of Gaussian as expressed 

below,  

𝑝(𝑥) = ∑𝜋𝑘𝜑(𝑥|𝜇𝑘, ∑𝑘)

𝑘

𝑘=1

 

𝜋𝑘 is the mixture coefficient indicating responsibility from one of the component 

to explain observation points. 𝜑 is a Gaussian distribution component. As illustrated in 

Figure 3-1 below, random data points x are generated by a mixture model of Gaussian 

distribution in Figure 3-1(a). Different colors denote different Gaussian distribution 

components. Therefore, for each data point, there would be an underlying label (Figure 3-

1(a)) indicating the component (Gaussian distribution) generating this data point. After 

randomly sampling from marginal distribution P(x), we can only observe the set of pink 
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points in Figure 3-1(b), with no information of which component the data are from. Our 

goal is to make the estimation on such a label on each point (Figure 3-1(c)) to be as close 

as possible to its real label (Figure 3-1(a)). However, as the example shows, points 

generated by two different Gaussian models could be located next to or even overlapping 

each other, and it is very difficult to label them correctly if we assign the point a hard 

assignment to one distribution. In such a situation, soft assignment would be a better 

choice. Other than assigning it to one component, we assign the contribution from all 

components to this point by probability value. So, the point in between two clusters can be 

assigned as contributed; for example, by each distribution of 50%, as shown as the purple 

points in Figure 3-1(c). One goal of mixture model parameter estimation is to find the soft 

assignment 𝜋𝑘 of each component in the mixture model to these points; in other words, the 

responsibility each component holds for generating these points.  

 

Figure 3-1 Example of 500 points drawn from the mixture of 3 Gaussians [68] 

In our root cause probability estimation problem, we observed a set of diagnosis 

reports and wanted to know how much each root cause contributed to generating those 

reports. The contribution 𝜋𝑘  is probability value and sum to 1 over all candidate root 

causes. It is the underlying root cause distribution that we want to estimate. 
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Each diagnosis report is an observed data point. Diagnosis reports triggered by each 

root cause follow an underlying distribution. We call this diagnosis reports distribution of 

the given root cause. All the possible diagnosis reports triggered by one root cause should 

follow diagnosis reports distribution of that root cause. The parameters or underlying 

variables of diagnosis reports distribution could include, but are not limited to, factors such 

as layout location of its instance, logic effect of its failure, design dependent test patterns, 

root cause characteristic and defect behavior.  

Similar to mixture model of Gaussian distributions, which is a superposition of 

individual Gaussian distribution. Diagnosis reports distribution of each root cause is a 

component of the mixture model of diagnosis reports distributions. Combining diagnosis 

reports distribution of all candidate root causes, we establish the mixture model of 

diagnosis reports distributions as a superposition of diagnosis reports distribution for each 

candidate root cause, with a mixture coefficient of 𝜋𝑘 accordingly. All observed data points 

follow the mixture model of diagnosis report distribution. Similar to the example of 

mixture of Gaussian, though each point has an underlying root cause label, other than 

providing a hard assignment for points from one component of the mixture model, we do 

a soft assignment on each diagnosis report in which the responsibility of each component 

is estimated. Such assignment should be based on an optimal estimation on parameters of 

mixture model of diagnosis report distribution. The parameters could include 𝜋𝑘 and a set 

of parameters for diagnosis report distribution.  

After estimation of the root cause distribution 𝜋𝑘 for the overall diagnosis report 

population, we can estimate how many of the failing dies fail due to each root cause. For 

diagnosis report of each failing die, we can estimate the probability of root cause given that 

die, indicating for each of the root causes how much chance there is that it is responsible 

for the defective die. To summarize, our goal is to find the root cause “responsibility” to 

the observed diagnosis reports. Such “responsibility” is based on the estimated root cause 

distribution 𝜋𝑘 of an entire population. 
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To achieve above goal, first of all, we need to construct mixture of diagnosis report 

distribution, which is a probability model needed to describe the dependent relationship 

between all root causes and the observed diagnosis reports. There are established 

probability distributions such as Gaussian distribution that are often used to model random 

data. In RCD, diagnosis report distribution is modeled based on domain knowledge of the 

diagnosis process on failing dies by a Bayesian net [69]. In the following discussion, the 

mixture model of diagnosis report distributions is termed volume diagnosis model, 

Bayesian model, or probability model of RCD. Based on the mixture model of diagnosis 

report distributions, there are more than one possible root cause distributions that might 

generate the observed diagnosis results. Since the number of such possible root cause 

distributions can be extremely large, an exhaustive search is not practical. So, the next step 

is to find an optimization technique to identify the optimal root cause probability 

distribution. In the next section, we will explain in detail the stages of RCD on modeling 

diagnosis data and finding the optimal solution. 

3.3 Stages of RCD  

RCD includes two Stages: 1. Construct a probability model of volume diagnosis 

data and calculate likelihood of observed data 2. Apply unsupervised learning on volume 

diagnosis to obtain the most likely root cause distribution. 

Volume diagnosis Model: To capture the causal relationship between unknown 

variables of a root cause and an observations report, a probabilistic model is constructed to 

model the situation in which a die fails due to a specific root cause. This modeling process 

will involve a thorough domain knowledge of the diagnosis process, layout feature 

extraction and defect behavior, from how a design feature causes a defect to the observed 

volume diagnosis data. The causal relationship is modeled by a Bayesian belief network. 

The mixture of diagnosis report distribution is denoted as 𝑃(𝑟𝑒𝑝𝑜𝑟𝑡).  
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           𝑃(𝑟𝑒𝑝𝑜𝑟𝑡) = ∑ 𝜋𝐶 ∗ 𝑃(𝑟𝑒𝑝𝑜𝑟𝑡|𝑑𝑜𝑚𝑎𝑖𝑛 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑜𝑓 𝑟𝑜𝑜𝑡 𝑐𝑎𝑢𝑠𝑒 𝐶)

𝐴𝑙𝑙 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
root cause

= ∑ 𝑃(𝑟𝑜𝑜𝑡 𝑐𝑎𝑢𝑠𝑒 𝐶)

𝐴𝑙𝑙 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
 𝑟𝑜𝑜𝑡 𝑐𝑎𝑢𝑠𝑒

∗ 𝑃(𝑟𝑒𝑝𝑜𝑟𝑡|𝑑𝑜𝑚𝑎𝑖𝑛 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑜𝑓 𝑟𝑜𝑜𝑡 𝑐𝑎𝑢𝑠𝑒 𝐶) 

𝜋𝐶 is the mixture coefficients needed to be estimated and is essentially the root 

cause probability termed as 𝑃(𝑟𝑜𝑜𝑡 𝑐𝑎𝑢𝑠𝑒 𝐶). This parameter is referred as 𝜋𝑘 above in 

mixture of Gaussian example. For each root cause, a diagnosis report 

distribution 𝑃(report|𝑑𝑜𝑚𝑎𝑖𝑛 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑜𝑓 𝑟𝑜𝑜𝑡 𝑐𝑎𝑢𝑠𝑒 C), of which the parameters 

are estimated based on domain knowledge, is modeled as a component of the mixture 

model. Based on this mixture model, the likelihood of the observed diagnosis reports given 

a certain root cause probability distribution can be calculated. 

Search for an optimal root cause distribution by unsupervised learning: The 

Expectation Maximization (EM) algorithm [70] is applied to find the most likely root cause 

distribution given a population of failing dies. Our approach to finding the underlying root 

cause distribution is essentially unsupervised learning to find the probability distribution 

with maximal likelihood. 

3.4 Details of RCD Learning 

In this section, the details of the statistical model of RCD and the unsupervised 

learning process are described. We will first explain terminology used in this model and 

diagnosis, then present the Bayes net of volume diagnosis, and lastly describe steps in the 

EM algorithm for unsupervised learning. 

3.4.1 Typical Diagnosis Report 

A typical diagnosis report: Terminology used in diagnosis reports in RCD model is 

defined. Subsequent discussion will use the following terms. 
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Fault: A specific logic failure model at a specific logic location in a netlist. 

Different faults can be either related to different logic failure model or they are at different 

logic locations. It is also referred as logic fault or logic suspect in diagnosis report. 

Defect: A specific physical defect effect at a specific physical location in a layout. 

Different defects can be either related to different physical effects or they are at different 

physical locations. It is also referred as physical suspect or suspect in diagnosis report.  

Physical feature: Properties of physical defects. They are the root causes why a 

defect happens. In the following work, the terms root cause and physical feature are used 

interchangeably. A physical feature is also referred as a feature or design feature.  

A schema represents a typical diagnosis report with layout information, shown in 

Figure 3-2. Without loss of generality, all failing devices are assumed to be caused by one 

root cause only. If a failing die has multiple defects, then we assume they are independent, 

and we can break the diagnosis report into independent diagnosis reports. 

 

Figure 3-2 Schematics of a typical diagnosis report 
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Typically, in one diagnosis report, there can be more than one logic fault. Figure 3-

2 shows the schematic representation of a diagnosis report with two logic faults. Each logic 

fault can cause the failures observed at the tester. For each logic fault, all physical defects 

which can cause the logic fault will be reported. For each defect, a score is calculated based 

on the failing bits. In Figure 3-2, the first fault has only one physical defect, while the 

second fault has two physical defects. Further, for each physical defect, the diagnosis report 

contains a list of physical features/root causes, each of which can cause the physical defect. 

In Figure 3-2, the physical defects have 4, 2, and 1 root causes, respectively. 

3.4.2 Bayes Net of Volume Diagnosis 

In this Bayes net, the conditional probability among defect, fault and physical 

features (root causes) are constructed. As mentioned above, in each diagnosis report, there 

can be several faults, each of which matches the failures observed at testers. There are 

several defects, each of which can cause one specific fault. There are several physical 

features, each of which can be responsible for triggering one specific defect. It is possible 

for one physical feature to trigger two different defects at two different physical locations. 

In the following, P stands for probability. The following terms are used in the Bayes net of 

volume diagnosis. 

P(v): the probability of sampled volume diagnosis reports. 

P(r): the probability of one diagnosis report. 

P(f): the probability of one fault. 

P(d): the probability of one defect. 

P(c): the probability of one physical feature (root cause). 

P(v) is calculated based on the assumption that all diagnosis reports are 

independent. 𝑟𝑛 is the nth report. 

𝑃(𝑣) = ∏ 𝑃(𝑟𝑛 )

𝑎𝑙𝑙 𝑟𝑒𝑝𝑜𝑟𝑡 𝑟𝑛 
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P(r): If all faults are mutually exclusive and P(f) sum to 1 over all faults in one 

report, P(r) can be calculated as indicated below. P(r|f) is a conditional probability of report 

r if a specific fault f is true. 𝑓𝑖 is the ith fault in the nth report. 

𝑃(𝑟𝑛 ) = ∑ 𝑃(𝑟𝑛 |𝑓𝑖 ) ∗ 𝑃(𝑓𝑖 )
𝑎𝑙𝑙 𝑓𝑎𝑢𝑙𝑡 𝑓𝑖 

 𝑖𝑛 
 𝑟𝑒𝑝𝑜𝑟𝑡 𝑟𝑛 

 

P(f): If all defects are mutually exclusive and P(d) sum to 1 over all defects that can 

cause this fault, P(f) can be calculated as below. P(f|d) is a conditional probability of fault 

f if a specific defect d is true. 𝑑𝑗 is the jth defect for ith fault. 

𝑃(𝑓𝑖) = ∑ 𝑃(𝑓𝑖|𝑑𝑗) ∗ 𝑃(𝑑𝑗)
𝑎𝑙𝑙 𝑑𝑒𝑓𝑒𝑐𝑡 𝑑𝑗

 𝑓𝑜𝑟 
𝑓𝑎𝑢𝑙𝑡  𝑓𝑖 

 

P(d): If all root causes are mutually exclusive and P(c) sum to 1 over all candidate 

root cause, P(d) can be calculated as below. P(d|c) is a conditional probability of defect d 

if a specific root cause c is true. 𝑐𝑘 is the kth candidate root cause. 

𝑃(𝑑𝑗) = ∑ 𝑃(𝑑𝑗|𝑐𝑘 ) ∗ 𝑃(𝑐𝑘 )
𝐴𝑙𝑙 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 
𝑟𝑜𝑜𝑡 𝑐𝑎𝑢𝑠𝑒 𝑐𝑘 

 

Combining all these equations, we get update P(v), as below:  

𝑃(𝑣) = ∏ ∑ 𝑃(𝑟𝑛|𝑓𝑖)

𝑎𝑙𝑙 𝑓𝑎𝑢𝑙𝑡𝑠 𝑓𝑖 
 𝑖𝑛 

𝑎 𝑟𝑒𝑝𝑜𝑟𝑡 𝑟𝑛 

𝑎𝑙𝑙 
𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑟𝑛 

∗

(

 
 
 

∑ 𝑃(𝑓𝑖|𝑑𝑗) ∗

(

  
 

∑ 𝑃(𝑑𝑗|𝑐𝑘) ∗ 𝑃(𝑐𝑘)
𝐴𝑙𝑙 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 
𝑟𝑜𝑜𝑡 𝑐𝑎𝑢𝑠𝑒 𝑐𝑘 )

  
 

𝑎𝑙𝑙 𝑑𝑒𝑓𝑒𝑐𝑡 𝑑𝑗
 𝑓𝑜𝑟 

𝑎 𝑓𝑎𝑢𝑙𝑡 𝑓𝑖 )

 
 
 

 

P(v) can be also expressed as following:  
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𝑃(𝑣) = ∏ ∑ 𝑃(𝑟𝑛, 𝑐𝑘)
𝐴𝑙𝑙 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 
𝑟𝑜𝑜𝑡 𝑐𝑎𝑢𝑠𝑒 𝑐𝑘

𝑎𝑙𝑙 
𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑟𝑛 

 

= ∏ ∑ 𝑃(𝑟𝑛|𝑐𝑘) ∗ 𝑃(𝑐𝑘)
𝐴𝑙𝑙 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 
𝑟𝑜𝑜𝑡 𝑐𝑎𝑢𝑠𝑒 𝑐𝑘

𝑎𝑙𝑙 
𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑟𝑛 

 

The first equality holds because the root causes (c) are assumed to be mutually 

exclusive, and their probabilities (P(c)) add up to one [74]. The second equality follows 

from the chain rule of probability [75]. P(r|c) is a conditional probability of report r if a 

specific root cause c is true.  

Conditional probability 𝑃(𝑟𝑛|𝑓𝑖) , 𝑃(𝑓𝑖|𝑑𝑗)  and 𝑃(𝑑𝑗|𝑐𝑘)  are three model 

parameters estimated based on domain knowledge. They are fixed and known values in the 

model for all root causes𝑐𝑘 , defects  𝑑𝑗 , faults 𝑓𝑖  and reports rn. In EM unsupervised 

learning, 𝑃(𝑐𝑘) is the unknown variable to learn. 

3.4.3 EM Procedure 

The EM algorithm is an effective unsupervised learning method to find the 

underlying probability distribution of complete data by learning from incomplete data [71]. 

The EM algorithm iteratively applies an expectation step (E-step) and a maximization step 

(M-step) till the value of the likelihood value reaches an optimal point. P(v) is the 

likelihood function. The log likelihood function 𝐿𝑛(𝑣) is expressed as below: 

𝐿𝑛(𝑣) = log(𝑃(𝑣)) = ∑ 𝑙𝑜𝑔

(

  
 

∑ 𝑃(𝑟𝑛|𝑐𝑘) ∗ 𝑃(𝑐𝑘)
𝐴𝑙𝑙 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 
𝑟𝑜𝑜𝑡 𝑐𝑎𝑢𝑠𝑒 𝑐𝑘 )

  
 

𝑎𝑙𝑙 
𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑟𝑛 

 

We use maximum likelihood estimator (MLE) [72] to maximize P(v) with respect 

to P(c) of all root causes in the following steps: 
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1. Parameter initialization: The only unknown parameter in RCD model is 

𝑃(𝑐𝑘). 𝑃(𝑐𝑘) is initialized with random value, and we call 𝑃(𝑐𝑘)
′ the current 

value of estimated 𝑃(𝑐𝑘). Log likelihood value is evaluated using 𝑷(𝒄𝒌)′.  

2. E step: Evaluate expected value of 𝑷(𝒄𝒌|𝒓𝒏)′ using current 𝑃(𝑐𝑘)′.  

𝑷(𝒄𝒌|𝒓𝒏)′ =
𝑃(𝑐𝑘)′ ∗ 𝑃(𝑟𝑛|𝑐𝑘)

∑ (𝑐𝑘)′ ∗ 𝑃(𝑟𝑛|𝑐𝑘)𝑎𝑙𝑙 𝑟𝑜𝑜𝑡 𝑐𝑎𝑢𝑠𝑒 𝑐𝑘 
 

𝑷(𝒄𝒌|𝒓𝒏)′  is the updated posterior probability given an observed report 𝑟𝑛 . It 

indicates how much responsibility a root cause 𝑐𝑘 takes for generating report 𝑟𝑛. 

3. M step: Update current 𝑷(𝒄𝒌)
′ value by maximizing 𝐿𝑛(𝑣). 𝑷(𝒄𝒌)

′ is obtained 

by setting the derivatives of 𝐿𝑛(𝑣) with respect to 𝑃(𝑐𝑘′) and a constraint that 

∑ 𝑃(𝑐𝑘) = 1 𝑎𝑙𝑙 𝑟𝑜𝑜𝑡 𝑐𝑎𝑢𝑠𝑒 𝑐𝑘 . 

𝑷(𝒄𝒌)′ =

∑ 𝑃(𝑐𝑘|𝑟𝑛)′𝑎𝑙𝑙 
𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑟𝑛 

 

𝑁
 

N is the number of all observed reports. 𝑷(𝒄𝒌)
′  is essentially the normalized 

responsibility that root cause 𝑐𝑘 takes for generating all N reports. 

After initialization, the E-step and M-step are performed consecutively during each 

iteration. The value of the likelihood function 𝐿𝑛(𝑣) is evaluated in each interaction and 

compared with its previous value from previous iterations. The EM iterations continue until 

𝑃(𝑐𝑘)′ converges to a certain point where 𝐿𝑛(𝑣) stops increasing, and thus likelihood 

function is maximized. This maximization is guaranteed because changes to 𝑃(𝑐𝑘)′ will 

always increase the value of likelihood [70].  

3.5 RCD Flow and Bayesian Model Parameter 

Figure 3-3 shows the general stages of the RCD procedure. The input information 

of RCD learning has two main parts: Layout-aware diagnosis of defective dies and 

information of candidate root causes of the whole design. 
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Figure 3-3 Flow Chart of RCD 

Layout-aware diagnosis: With failing files of defective dies, layout file, netlist of 

design and test patterns generated by ATPG, layout-aware diagnosis is performed, and a 

set of diagnosis reports are generated with information about root causes, defects and faults.  

Root cause information from design: This information will be used to compute 

the parameters of the Bayesian net, as shown in the block inside the dashed line.  

Root cause instance: A layout part, of which some extracted characteristics are 

defined as a root cause. Such an instance is associated with a physical defect and is called 

out by diagnosis along with that defect. For the same defect location, different root cause 

instances could be associated with it. The properties of the same physical defect associated 

with different root causes are different.  

Root cause instance weight/feature weight: Indicates the possibility of an instance 

of this feature being defective. This number is estimated based on how the defect caused 

by this root cause is modeled. For example, for a random spot defect model based on critical 
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area, an instance with a larger critical area will more likely be defective, so the feature 

weight of an instance of a random spot defect is the size of its critical area. For root causes 

such as layout physical structure, each instance will have the same chance of being 

defective, so the weight of each instance is the same.  

Defect distribution/feature weight distribution: For each candidate root cause, root 

cause instance associated with every candidate physical defect is extracted from the layout, 

along with the weight of each root cause instance. This distribution shows how often a 

defect would occur if a certain root cause presents. Each candidate defect is a diagnosable 

defect which can be called out by a diagnosis tool. Which root causes are associated with 

a given defect depends on the definition of root causes. The above two factors, which are 

limited by diagnosis techniques and prior knowledge of failure mechanism, will affect 

accuracy of estimated parameter of Bayesian model. Total feature weight of one root cause 

is the sum of the feature weights of all diagnosable instances of that root cause. Total 

feature weight is also referred to as RCD constants. 

Bayesian model parameter estimation [48]: 

𝑃(𝑟𝑛|𝑓𝑖) Estimation: Assumed to be 1. 

𝑃(𝑓𝑖|𝑑𝑗) Estimation: Due to logical equivalence, the same failure behavior we 

obtain from test pattern failing bits could be explained as different individual defects. Such 

an explanation might vary by setting of diagnosis, and can include the score of each defect, 

root causes for defect, number of defects, etc. For one report, each possible defect site is a 

defect, and is scored by how well the observed behavior of the defective die matches the 

behavior explained by the fault model we applied in the diagnosis. For now, this probability 

is calculated based on diagnosis score.  

𝑃(𝑑𝑗|𝑐𝑘) Estimation: If a reported physical defect occurred because of a given root 

cause, there would then be at least one instance of that root cause associated with that 

suspect. The probability of such an instance is calculated by taking the value of the feature 

weight of that root cause instance divided by the total feature weight of a given root cause.  
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3.6 Possible Challenge for RCD  

Previous work on RCD [44], [48], [49] has proven its effectiveness. However, as 

moving to new technology node, the failure mechanisms of defects have become more 

complicated and bring new challenges to RCD. The following are potential issues might 

affect RCD.  

Limited Sample Data: In unsupervised learning of RCD, we used MLE to obtain 

the optimal root cause distribution. It has been proven [73] that MLE are consistency, 

normality and efficiency when the sample size approaches infinity. Researchers should also 

be aware that the behavior of the ML estimator working with a small sample size is largely 

unknown. However, in reality we usually do not have enough data to completely fulfill the 

conditions of optimal ML estimation. In volume diagnosis, it is not practical to obtain an 

infinite number of data from real silicon data, as discussed in Chapter 2.  

Bayesian Model parameter: The estimation of the Bayesian parameter is based 

on domain knowledge of diagnosis techniques and failure mechanisms. It is also built open 

certain assumptions we make that might not exactly reflect real scenarios of defect. As new 

design features appear, such domain knowledge might also become insufficient to provide 

a precise estimation of model parameters. 
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CHAPTER IV 

CARD GAME MODEL FOR DDYA INVESTIGATION 

In this chapter, a card game model is presented to create controllable diagnosis data 

which can be used to evaluate the effectiveness of volume diagnosis data mining 

techniques. The effectiveness of RCD statistical models given limited sampling data is 

discussed using the card game model [77]. 

4.1 Introduction and Motivation 

Scan diagnosis, also called logic diagnosis [8-13], is used to determine the defect 

locations and defect mechanisms for a given failing device and the scan test patterns used. 

Scan diagnosis results have been successfully used to guide physical failure analysis (PFA) 

to focus on a small area, and thus improve PFA success rate with reduced turnaround time 

and cost. 

Recent advancements in scan diagnosis technologies include use of more physical 

information, such as layout-aware diagnosis [14-16], cell-internal diagnosis [17-20], and 

cell-aware diagnosis [21-22]. This extra information not only improves diagnosis 

resolution to smaller and smaller defect locations, but also more precisely identifies 

physical features associated with each defect. These physical defect features include, but 

are not limited to, defect type (open, short), defect layer, via macro type, cell type, critical 

area, defect shape, specific layout pattern and specific DFM rule.  

With physical defect features reported by diagnosis tools, numerous papers [38], 

[40], [43], [47], [48], [49], [51], [53], [66], have proposed to use volume (large amount of) 

diagnosis reports with appropriate statistical analysis to automatically identify a common 

physical defect feature. Fixing such a common physical defect feature results in improved 

yield. Every DDYA work among [38], [40], [43], [47], [48], [49], [51], [53], [66] has had 

a certain degree of success, as evidenced by their experimental results. In this work, we 

will focus on investigating RCD, one type of DDYA technique, as discussed in Chapter 3.  
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Typically, in one diagnosis report, several logic faults may be identified, each of 

which can cause the failures observed at testers. Also reported are several physical defects, 

each of which can cause one fault. Also reported are several physical features, each of 

which is responsible for causing one defect. In other words, a diagnosis report can be 

caused by several possible physical features, with various probabilities of each. A group of 

diagnosis reports can be caused by their combined possible physical features, with various 

probabilities of each. The sum of these probabilities should be 1. Probability distribution 

or distribution refers to the probabilities of all physical features in this paper. Physical 

features with higher probabilities are responsible for more diagnosis reports. The goal of 

RCD is to identify these high probability physical features within a volume of diagnosis 

reports. In general, the number of high priority physical features is very small. PFA should 

focus on the defects affected by these high probability physical features, and thus further 

improve diagnosis resolution and PFA success rate. 

A simple example is shown in Figure 4-1. This figure illustrates a bridge fault 

involving two nets in one diagnosis report. These two nets are neighbors in 5 different 

defect locations. All defects have different physical features: layout layers as shown in 4 

blue ovals and 1 red oval. There are 5 possible physical features (metal bridges at certain 

layers) for this bridge fault. For this diagnosis report, if the most likely physical features 

cause the defect at the red oval (metal bridge at certain layer) and not at the other 4 blue 

ovals, DDYA can recognize that the most likely defect is at the red oval. This information 

improves diagnosis resolution and PFA success rate. 
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Figure 4-1 An example of a bridge fault 

Because of design complexity and limited test patterns used, diagnosis reports often 

identify multiple faults, multiple defects and multiple physical features; thus, simply 

summing up is not sufficient to obtain correct distribution. With volume diagnosis reports, 

RCD uses statistical methods to identify the correct distribution of these diagnosis reports. 

In statistical analyses, MLE [72] is a method of estimating the most likely distribution for 

observed data. It is known that the distribution identified by MLE is correct if the likelihood 

model of volume diagnosis reports is correct and the number of diagnosis reports is 

unlimited. So, the RCD problem has two parts: how to obtain correct volume diagnosis 

likelihood models, and how to ensure that the distribution identified by MLE is correct 

with limited diagnosis reports. As discussed in Chapter 3, the two parts of RCD have two 

potential issues: limited diagnosis sample data and inaccurate model parameters.  

To verify the effectiveness of these DDYA techniques, previous research [38], [40], 

[43], [47], [48], [49], [51], [53], [66] have obtained failure files for the experiments using 

a handful of silicon defects and many simulated defects. However, diagnosis reports 

depend on design behavior and test patterns used. It is difficult to ensure that simulated 

defects can create diagnosis reports with sufficient diversity to verify the effectiveness of 

the investigated procedures.  

In this chapter, a simple card game is introduced and used to create controllable 

diagnosis reports with the desired diversity of scenarios for detailed analysis of 



www.manaraa.com

54 
 

 

effectiveness of a given DDYA. The card game model is designed to map the volume 

diagnosis model to card game model of which we have all precious information of data, so 

that the obtained card game model parameter can be accurate. This procedure allows 

flexibility in both data and model, making it an effective and convenient way to evaluate 

DDYA. In Section 4.2 below, a simplified Bayesian network of RCD used to model volume 

diagnosis reports will be briefly presented.  

Assuming that the model is correct, to explain clearly the issues encountered with 

limited data, a simpler and similar data model based on a card game is introduced in Section 

4.3. In Section 4.4, various data parameters are used for the card game to further illustrate 

the issues encountered when data are limited. The solutions to overcome these issues and 

to tolerate the industrial scan failure data will be discussed in Section 4.5. Section 4.6 

concludes this Chapter. 

4.2 Simplified Volume Diagnosis Model 

As mentioned above, each diagnosis report can identify several faults, each of 

which matches the failures observed at testers. Several defects may exist, each of which 

can cause one specific fault. There are several physical features, each of which can be 

responsible for triggering one specific defect. It is possible for one physical feature to 

trigger two different defects at two different physical locations.  

The Bayesian model built for volume diagnosis is described in detail in Chapter 3. 

Below, we will revisit the simple version of equations, mapping them to card game model 

equations.  

The likelihood function is P(v)=Π(P(r)). That is the probability of all sampled 

volume diagnosis reports. It is equal to the product of the probability of each diagnosis 

report if all diagnosis reports are independent.  

P(r)=Σ(P(r|f)*P(f)) if all faults are mutually exclusive and P(f) sum to 1. P(r|f) is 

a conditional probability of report r if a specific fault f is true.  
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P(f)=Σ(P(f|d)*P(d)) if all defects are mutually exclusive and P(d) sum to 1. P(f|d) 

is a conditional probability of fault f if a specific defect d is true.  

P(d)=Σ(P(d|c)*P(c)) if all root causes are mutually exclusive and P(c) sum to 1. 

P(d|c) is a conditional probability of defect d if a specific root cause c is true. Combining 

all these equations, we get P(v)=Π(Σ(P(r|f)*(Σ(P(f|d)*(Σ(P(d|c)*P(c)))))). MLE finds the 

distribution of P(c) of all root causes such that P(v) has maximum value. 

As mentioned above, MLE is accurate if the model used is correct and the sampled 

data are infinite. The accuracy of this Bayesian network depends on the accuracy of P(r|f), 

P(f|d) and P(d|c). How to assess their values accurately will be discussed in Section 6.5. 

With an accurate Bayesian network, the impact of limited sample data is discussed first. 

To clarify limited data issues, a card game is introduced in the next section. This card game 

data has statistical characteristics similar to those of volume diagnosis data. 

4.3 Card Game 

Setting: In this card game, there are several card decks. Each card deck has several 

cards, with each card marked with a number. It is not necessary that all cards have unique 

numbers. The information of what numbers are included in each card deck is known. The 

sizes of different card decks can differ. 

Game: Assume there is a genie who will select a card deck and randomly draw a 

card from that deck. Each time, the number on the drawn card is recorded before the card 

is returned to its deck. The genie draws N cards independently, resulting in N numbers 

reported. One card deck can be selected multiple times. 

Problem to solve: Based on the N reported numbers, determine the probability 

distribution of decks selected by the genie. Additionally, determine the probability 

distribution of decks for each card. The Bayesian network of the card game can be 

established as: 

• P(t)=Π(P(n))  
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• P(n)=Σ(P(n|d)*P(d))  

P(t): probability of all reported numbers 

P(n): probability that a specific number n is drawn 

P(n|d): probability that number n is drawn if a specific deck d is picked 

P(d): probability that a specific deck d is picked 

Combining all equations together, we get P(total)=Π(Σ(P(n|d)*P(d))). 

As mentioned above, the information about numbers on all cards included in each 

card deck is known. For example, a card deck with size S has c cards with the number 17, 

P(n|d)=c/S for the number 17 in this card deck. Hence, P(n|d) of any specific number in 

any specific card deck can be easily and accurately calculated. In other words, the Bayesian 

network P(t)=Π(Σ(P(n|d)*P(d))) models the card game accurately. 

The card game provides the flexibility to create all sorts of scenarios that can be 

used to investigate the limitation of MLE with limited sampled data on an accurate 

Bayesian network. Without loss of generality, in this card game all numbers in one card 

deck are unique, such that P(n|d)=1/S. Basically, the Bayesian network shows that all 

numbers within one deck have equal probability of being selected, but numbers on different 

decks have different probabilities. 

An example of the card game is shown in Figure 4-2. There are 3 card decks. Deck 

A has card numbers 1, 2, 3, 4, 5, 6. Deck B has card numbers 1, 3, 5. Deck C has card 

numbers 1, 2, 3. Four cards are drawn by the genie. Assume that the numbers on these 4 

cards are 1, 2, 4, and 5. Using MLE, the problem is to identify the probability distribution 

of card deck selection by the genie such that the probability of drawing these 4 numbers 

has the maximum value. 



www.manaraa.com

57 
 

 

 

Figure 4-2 A simple example 

For these 3 decks, P(n|d) is 1/6 for all numbers in deck A, since there are 6 numbers, 

all numbers are unique, and with the assumption that the genie picks a card from the card 

deck randomly with equal probability. Similarly, P(n|d) is 1/3 for (1, 2, 3) in deck B and 

1/3 for (1, 3, 5) in deck C. There are 4 probability equations for these 4 drawn cards. 

𝑃(1) = 1/6 ∗ 𝑃(𝐴) + 1/3 ∗ 𝑃(𝐵) + 1/3 ∗ 𝑃(𝐶) 

𝑃(2) = 1/6 ∗ 𝑃(𝐴) + 1/3 ∗ 𝑃(𝐶) 

𝑃(4) = 1/6 ∗ 𝑃(𝐴) 

𝑃(5) = 1/6 ∗ 𝑃(𝐴) + 1/3 ∗ 𝑃(𝐵) 

Since all 4 cards are drawn independently, P(total) is  

𝑃(1) ∗ 𝑃(2) ∗ 𝑃(4) ∗ 𝑃(5)
= (1/6 ∗ 𝑃(𝐴) + 1/3 ∗ 𝑃(𝐵) + 1/3 ∗ 𝑃(𝐶)) ∗ (1/6 ∗ 𝑃(𝐴) + 1/3
∗ 𝑃(𝐶)) ∗ (1/6 ∗ 𝑃(𝐴)) ∗ (1/6 ∗ 𝑃(𝐴) + 1/3 ∗ 𝑃(𝐵)) 

P(total)) has 3 variables: P(A), P(B) and P(C). Since there are only 3 possible card decks, 

P(A)+P(B)+P(C)=1. Using P(C)=1-P(A)-P(B), the total probability equation can be 

reduced to 2 variables, P(A) and P(B). This 2-variables total probability equation  

𝑃(𝑡𝑜𝑡𝑎𝑙) = 𝑃(1,2,4,5)
= (2 − 𝑃(𝐴)) ∗ (2 − 𝑃(𝐴) − 2 ∗ 𝑃(𝐵)) ∗ 𝑃(𝐴) ∗ (𝑃(𝐴) + 2 ∗ 𝑃(𝐵))
∗ 1/1296 
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can be plotted as shown in Figure 4-3(a). The coordinates of (P(A), P(B)) are marked inside 

the figures. The maximal-value point is plotted as color yellow. This two-dimensional plot 

has the highest value at P(A)=1, P(B)=0 (P(C) = 0). P(total)=1/1296. The distribution 

with maximal likelihood is (100% deck A, 0% deck B and 0% deck C), meaning that all 

reported numbers (1, 2, 4, 5) are from deck A.  

If only three cards (1, 2, 5) are drawn,  

𝑃(𝑡𝑜𝑡𝑎𝑙) = 𝑃(1,2,5)
= (2 − 𝑃(𝐴)) ∗ (2 − 𝑃(𝐴) − 2 ∗ 𝑃(𝐵)) ∗ (𝑃(𝐴) + 2 ∗ 𝑃(𝐵)) ∗ 1/216 

and is plotted as shown in Figure 4-3(b). This two-dimensional plot has the highest value 

at P(A)=0, P(B)=0.5 (P(C)=0.5). P(total)=1/108. The distribution with maximal 

likelihood is 0% deck A, 50% deck B and 50% Deck C. This means that the number 1 has 

50% probability of being from deck B and 50% probability of being from deck C. The 

number 2 has 100% probability of being from deck C, and the number 5 has 100% 

probability of being from deck B. 

If there are only two reported numbers (1, 2),  

𝑃(𝑡𝑜𝑡𝑎𝑙) = 𝑃(1,2) = (2 − 𝑃(𝐴)) ∗ (2 − 𝑃(𝐴) − 2 ∗ 𝑃(𝐵)) ∗ 1/36 

and is plotted as shown in Figure 4-3(c). This two-dimensional plot has the highest value 

at P(A)=0, P(B)=0 (P(C)=1). P(total)=1/9.  

This means that both number 1 and 2 have 100% probability of being from deck C. 

If there is only one reported number (1), the P(total) equation becomes P(1)=(2-P(A))*1/6, 

and is plotted as shown in Figure 4-3(d). This two-dimensional plot has the highest value 

at P(A)=0, P(B)+P(C)=1. P(total)=1/3. The answer is not really a point, but a line 

segment. Any point on this line segment has the same highest value, 1/3. This means that 

number 1 is from deck B or deck C, with a combined probability equaling 100%. 
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Figure 4-3 (a) 4 drawn cards; (b) 3 drawn cards; (c) 2 drawn cards; (d) 1 drawn cards 

It should be noted that MLE is not able to find the correct answer unless the number 

of reported numbers is large enough. For example, if the genie picks the number (1) from 

deck A, MLE is incorrect in determining that this number (1) is from either deck B or deck 

C (not from deck A), as illustrated in Figure 4-3(d). MLE is not correct until more cards 

are picked from deck A. As shown in Figure 4-3(a), MLE is correct after numbers (1, 2, 4, 

5) are picked from deck A. This issue will be discussed in detail in Section 4.5. 



www.manaraa.com

60 
 

 

4.4 Card Game Experiment 

The most likely deck distribution estimated by MLE is correct if the sampled data 

size is large enough. In practice, though, diagnosis sample size is limited even in volume 

diagnosis. We applied the above-mentioned Bayesian network on various card game 

scenarios generated by changing several parameters. These scenarios have various success 

rates using MLE on the simple Bayesian network of the card game. In the card game, we 

refer to the decks picked by the genie as picked card decks. The other decks not picked by 

the genie are unpicked card decks. To account for the correlation among different decks, 

all the numbers in the card decks are chosen from a pre-defined number pool. Below, we 

discuss several scenarios we examined to bring out the issues related to limited sample 

data. We also conducted experiments with the goal of identifying ways to improve the 

results using a popular machine-learning technique. 

4.4.1 Single Picked Card Deck 

In this experiment, we used the simplest scenario, in which all cards are drawn from 

one deck only. This scenario mimics one in which there is a single dominant root causes in 

volume diagnosis, with a single suspect called out. There are 5 different scenarios. In each 

scenario, 520 cases are randomly created using 4 parameters. In each case, 100 cards are 

drawn by the genie from one picked card deck. The results of these scenarios are shown in 

Table 4-1. In Table 4-1, the first column lists scenario names. The other columns show the 

success rate of identifying the deck from which each card originated. For example, a 90% 

success rate means the card decks of 90 cards out of 100 are correctly identified by MLE, 

and 10 cards are identified as selected from some unpicked card decks. That is an 

approximate based on estimated card deck distribution but not by probability of root cause 

in each individual card. 
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4.1.2.1 Scenario 1  

This scenario is created with the following parameters. 

a) The number pool used is integers in the range [1-1M]. 

b) The size of the single picked deck is randomly assigned a value between 1K and 

5K cards in each of the 520 cases. 

c) There are 9K unpicked card decks in each case. 

d) The sizes of the 9K unpicked card decks are randomly assigned a value between 

1 and 100 in each of the 520 cases. 

With this scenario, in 28 cases out of 520 cases MLE achieves a 100% success rate; 

that is, MLE identifies the deck correctly for all 100 cards. In 176 out of 520 cases, MLE 

achieves a 99% success rate. This distribution allocates 99% of the cards to the picked card 

deck and 1% to an unpicked card deck. 

In Scenario 1, there are 9K unpicked card decks. Each card deck has 50 cards on 

average. In other words, there are 50*9K=450K unpicked cards. With a number pool size 

of 1M, for each number drawn from the picked card deck, on average, there are a total of 

0.45 unpicked card decks that could also have this drawn number. In diagnosis scenario, 

this means each diagnosis report identifies an average of 0.45 extra root causes besides the 

single real root cause. From Table 4-1, we see that MLE is not always correct even with 

such a small number of unpicked card decks per drawn number. 

Scenario 2 is created to have even more unpicked card decks per drawn number by 

using a smaller number pool of [1-100K]. This mimic a situation in which, for one failure 

file with the applied scan patterns, a significant number of faults have identical failure 

behavior to that of the failure file. 

4.1.2.2 Scenario 2 

This scenario is modified from Scenario 1 by changing parameter a) from [1-1M] 

to [1-100K], resulting in more unpicked card decks per drawn number.  
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a) The number pool used is integers in the range [1-100K].  

b) The size of the single picked deck is randomly chosen to be between 1K and 5K 

cards in each of the 520 cases.  

c) There are 9K unpicked card decks in each case. 

d) The sizes of the 9K unpicked card decks are randomly assigned a value between 

1 and 100 in each of the 520 cases.  

In Scenario 2, on average, for each number drawn from the picked card deck there 

are 4.5 unpicked card decks that have the same number. As expected, the success rate of 

MLE in this scenario is much worse compared to that seen in Scenario 1, as can be noted 

from the row for Scenario 2 in Table 4-1.  

Another way to change the number of unpicked card decks per drawn number is to 

change the number of unpicked card decks instead of changing the size of the number pool 

used for the card game. Scenario 3 is created to have fewer unpicked card decks by using 

a smaller number of unpicked card decks. 

4.1.2.3 Scenario 3 

This scenario is modified from Scenario 1 by changing parameter c) from 9K to 90 

unpicked card decks, resulting in fewer unpicked card decks per drawn number.  

This scenario is created with the following parameters.  

a) The number pool used is integers in the range [1-1M].  

b) The size of the single picked deck is randomly chosen to be between 1K and 5K 

cards in each of the 520 cases.  

c) There are 90 unpicked card decks in each case. 

d) The sizes of the 90 unpicked card decks are randomly assigned a value between 

1 and 100 in each of the 520 cases. 

In Scenario 3, the number of unpicked card decks is reduced from 9K to 90. On 

average, for each number drawn there are 0.0045 unpicked card decks that have the same 
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number. The success rate of MLE in this scenario is better than in Scenario 1, as can be 

seen from the corresponding row in Table 4-1. However, even with this substantially fewer 

number of unpicked card decks per drawn number, we still see that MLE is not always 

correct.  

Another way to change the number of unpicked card decks per drawn number is to 

change the size of all unpicked card decks. Scenario 4 is created to have more unpicked 

card decks per drawn number by increasing the size of all unpicked card decks 10-fold. 

4.1.2.4 Scenario 4 

This scenario is modified from Scenario 1 by changing parameter d) from [1-100] 

to [1-1K] to have more unpicked card decks per drawn number.  

This scenario is created with the following parameters.  

a) The number pool used is integers in the range [1-1M].  

b) The size of the single picked deck is randomly chosen to be between 1K and 5K 

cards in each of the 520 cases.  

c) There are 9K unpicked card decks in each case. 

d) The sizes of the 9K unpicked card decks are randomly assigned a value between 

1 and 1K in each of the 520 cases. 

In this scenario, on average there are 5K cards in each unpicked card deck, which 

means that for each drawn card, there are 4.5 unpicked card decks that have this drawn 

number. This is the same situation as for Scenario 2. Surprisingly, the success rate of MLE 

in this scenario is actually much better than for Scenario 2 and better even that for Scenario 

1 also. After further analysis, it is found that there is another factor that affects success rate. 

As mentioned previously, P(n)=Σ(P(n|d)*P(d)). It means that if P(n|d) of a picked card 

deck is higher than the P(n|d) of unpicked card decks, MLE will choose the picked card 

deck to get higher P(n). In this scenario, P(n|d) is randomly distributed from [1 to 1/1K] 

for all unpicked card decks, which is 10 times smaller than that in Scenarios 1 and 2. In 
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Table 4-1, we see that the success rate is affected more by P(n|d) than by the count of 

unpicked card decks per drawn number. 

Another way to change the relative P(n|d) between the picked card deck and the 

unpicked card decks is to change the P(n|d) of the picked card deck. Scenario 5 was created 

to reduce P(n|d) of the picked card deck by increasing its size. 

This scenario is modified from Scenario 1 by changing parameter b) from [1K-5K] 

to [5K-10K] to have lower P(n|d) of the picked card deck. 

4.1.2.5 Scenario 5 

This scenario is created with the following parameters.  

a) The number pool used is integers in the range [1-1M].  

b) The size of the single picked deck is randomly chosen to be between 5K and 10K 

cards in each of the 520 cases.  

c) There are 9K unpicked card decks in each case. 

d) The sizes of the 9K unpicked card decks are randomly assigned a value between 

1 and 100 in each of the 520 cases.  

Since the P(n|d) of the picked card deck decreases as its size is increased in 

Scenario 5, the success rate of MLE in Scenario 5 is worse than in Scenario 1, as shown in 

the corresponding row of Table 4-1. 

4.4.2 Multiple Picked Card Deck 

It is harder to identify the picked card decks of drawn cards if multiple card decks 

are picked by the genie. This difficulty mimics the fact that it is harder to identify multiple 

root causes in volume diagnosis. We consider this case next, using two picked card decks. 

The same 5 different scenarios used in the case of single picked card deck are repeated 

with two picked card decks. In each scenario, 520 cases with sample size (total number of 

cards in both picked card decks) of 100 are created with two picked card decks. Fifty cards 

are drawn from each picked card deck. The results of these 5 scenarios with two picked 
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card decks are shown in Table 4-2. It can be seen that the MLE success rates are now worse 

than those in Table 4-1 for a single picked card deck. When two card decks are picked and 

each one has the same sampled data (same number of cards from each card deck), this can 

be seen as each picked card deck having a sample size half as large as that for a single 

picked card deck. In Table 4-2, each picked card deck has a sample size of 50, which is 

smaller than the sample size of 100 used in Table 4-1. To validate this view, the experiment 

of Table 4-1 was repeated with sample size reduced from 100 to 50, and the results are 

presented in Table 4-3. The results in Table 4-3 can be seen to be consistently worse than 

the results of Table 4-1. This validates the idea that smaller sample size reduces the success 

rate of MLE. The results in Table 4-3 and Table 4-2 are about the same on average but not 

consistent in all scenarios. Thus, one cannot say that MLE success rate reduction due to 

more picked card decks is the same as the reduction due to smaller sample size. 

Table 4-1 MLE success rate of single picked card deck 

 

 

 

 

 

Single Root Cause 

Sample size 100 

0% 0% 

~ 

50% 

50% 

~ 

60% 

60% 

~ 

70% 

70% 

~ 

80% 

80% 

~ 

90% 

90% 

~ 

95% 

95% 

~ 

99% 

99% 

~ 

100% 

100% 

Scenario 1  0 0 0 0 0 0 18 298 176 28 

Scenario 2 59 91 23 44 56 99 80 65 3 0 

Scenario 3  0 0 0 0 0 0 0 1 35 494 

Scenario 4 0 0 0 0 0 0 0 5 233 282 

Scenario 5  0 0 0 0 13 246 188 73 0 0 
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Table 4-2 MLE success rate of double picked card decks 

Table 4-3 MLE success rate of single picked card deck with half sample size 

4.5 Volume Diagnosis Practical Usage 

The card game experiment conducted in section 4.4 mimics the diagnosis scenario 

where there is single suspect/physical defect called out per diagnosis report. The mapping 

between card game and diagnosis is illustrated in Figure 4-4 below. Drawing one card, 

with card number 1 recorded, maps the scenario of a diagnosis report with only one defect 

1 reported.  

Multiple Root 
Causes 

Sample size 100 

0% 0% 

~ 

50% 

50% 

~ 

60% 

60% 

~ 

70% 

70% 

~ 

80% 

80% 

~ 

90% 

90% 

~ 

95% 

95% 

~ 

99% 

99% 

~ 

100% 

100% 

Scenario 1  0 0 0 0 11 163 129 174 43 0 

Scenario 2 141 270 2 18 21 52 16 0 0 0 

Scenario 3  0 0 0 0 0 0 0 17 247 256 

Scenario 4 0 0 0 0 0 0 0 144 376 0 

Scenario 5  0 0 0 87 338 95 0 0 0 0 

Single Root Causes 

Sample size 50 

 

0% 0% 

~ 

50% 

50% 

~ 

60% 

60% 

~ 

70% 

70% 

~ 

80% 

80% 

~ 

90% 

90% 

~ 

95% 

95% 

~ 

99% 

99% 

~ 

100% 

100% 

Scenario 1  0 66 51 51 57 97 95 87 15 1 

Scenario 2 447 2 11 13 18 25 4 0 0 0 

Scenario 3  0 0 0 0 0 0 0 33 84 403 

Scenario 4 0 0 0 0 0 0 5 201 192 122 

Scenario 5  4 414 81 18 2 0 0 0 0 0 
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Figure 4-4 Mapping between Card game and Diagnosis 

By controlling the number of unpicked card decks per drawn number and P(n|d), 

we created scenarios that mimic real cases in volume diagnosis, such as, large number of 

candidate root causes, root causes with sparse existence, and highly correlated root causes. 

These are also possible scenarios in volume diagnosis after including layout pattern and 

cell internal root causes, which will be discussed and investigated in Chapters 5 and 6. In 

the rest of this section, we will discuss general issues in volume diagnosis, using the card 

game model as reference. 

4.5.1 Volume Diagnosis Model Parameter Issues 

In Section 6.2, the Bayesian network of volume diagnosis is defined as below: 

𝑃(𝑣) = 𝛱(𝛴(𝑃(𝑟|𝑓) ∗ (𝛴(𝑃(𝑓|𝑑) ∗ (𝛴(𝑃(𝑑|𝑐) ∗ 𝑃(𝑐)))))) 

The accuracy of P(v) depends on the accuracies of P(r|f), P(f|d) and P(d|c).  
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P(r|f) is a conditional probability. It is the probability of one report when a specific 

fault in this report is true. Ideally, one fault should cause one failure file, such that it should 

have one specific diagnosis report. By definition, P(r|f) should be 1. However, due to the 

complexity of design and tests used, it is possible that some failure files do not match any 

fault. P(r|f) cannot be 0, which means the diagnosis report does not exist. To resolve this, 

one can remove such reports from the volume diagnosis reports. Due to complex design 

and un-modeled fault behavior, this will lead to quite a few diagnosis reports cannot be 

used. Another alternative is to choose P(r|f) to be less than 1 for faults included in the 

diagnosis report to indicate that they are close but not exact. To obtain correct P(r|f) 

requires the understanding of the score systems used in diagnosis tools. Some diagnosis 

tools even have different score systems for different fault models. 

P(f|d) is the probability of a fault if a specific defect is true. Again, this parameter 

requires the understanding of the relationship among logic faults and physical defects used 

in diagnosis tools. Typically, one defect causes only one fault, and one defect’s physical 

location is within one fault’s logic location. In other words, P(f|d)=1. However, some 

defects may cause un-modeled faulty behavior. Similar to P(r|f), adjustment is needed to 

obtain correct P(f|d). 

P(d|c) is the probability of a defect if one of its root causes is true. It can be 

calculated based on how many defects can result from this root cause. This information can 

be derived from layout and defect behavior of each root cause. Defects include opens and 

shorts in interconnects and inside cells. Their root causes can be process layers, layout 

pattern shapes, DFM rules and others. The correlation among these root causes and the 

defects should be used to obtain accurate P(d|c). 

Without good domain knowledge, an alternative is to use supervised machine 

learning techniques to derive these parameters based on good training data. With more 

aggressive deep learning techniques it is possible that a new model can be created to replace 



www.manaraa.com

69 
 

 

the Bayesian network. Some domain knowledge is still needed to get proper training data. 

In Chapter 6, a supervised learning method is proposed to derive parameters. 

4.5.2 Data Bias by Limited Sample Size  

In Section 6.4, even with a correct Bayesian network for the card game, the success 

rate of MLE on this card game is still not always100%. We performed detailed analysis of 

the cases with less than 100% MLE success rate in the experiments described above. This 

analysis showed that distribution chosen by MLE always included the picked card decks, 

but also with some unpicked card decks. 

Also, although all experimental data are generated based on a random number 

generator, the occurrence of each card in the sample does not exactly follow P(n|d) 

parameter. For example, using deck A in Figure 4-2, its P(n|d) is 1/6. However, drawing a 

card from this deck repeatedly 100 times, one can obtain the following sampled numbers: 

3 2 2 2 4 1 1 1 1 4 6 6 2 1 1 4 5 6 5 6 5 3 2 3 2 1 1 4 4 3 5 6 6 4 5 3 2 4 6 1 4 4 4 4 

6 1 4 5 6 3 5 6 3 5 6 5 3 5 6 1 4 2 5 6 4 1 1 4 2 1 1 4 4 6 3 2 2 4 1 1 1 4 3 5 3 2 6 3 2 3 5 6 

5 6 4 5 6 5 6 4 

In the sequence above, there are 18 occurrences of 1, 13 occurrences of 2, 13 

occurrences of 3, 21 occurrences of 4, 16 occurrences of 5, and 19 occurrences of 6. Clearly 

the occurrences are not exactly 1/6 for each number. Some numbers occur more than others. 

Statistically, the probability of all numbers will converge to 1/6 if the drawing continues 

indefinitely. P(n|d) is based on the assumption that all numbers in each card deck have 

equal probability of being drawn from the deck even if the drawing is limited. As in volume 

diagnosis, P(r|f), P(f|d) and P(d|c) can be correct based on unlimited diagnosis reports. As 

with P(n|d), they may not be true for each fault, each defect and each root cause when only 

limited diagnosis reports are used. The problem caused by limited sample data is referred 

to in this thesis as data bias. The biased data do not exactly follow assumed underlying 

probabilities, and can be distorted, as shown in Figure 4-5. Beside biased data, diagnosis 
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results can be incorrect due to design complexity and un-modeled defect behavior. These 

incorrect diagnosis reports are called outliers, since the majority of diagnosis reports should 

be correct. The outliers are not many, but they have bigger distortions, as shown at the right 

top corner of Figure 4-5. In this paper, to make it simple, biased data include outliers as 

well. 

 

Figure 4-5 Biased data from underlying probability 

As mentioned above with biased data in the card game, MLE distribution always 

includes the picked card decks along with extra unpicked card decks in the experiments of 

Section 4.4. As shown in Figure 4-6(a), MLE distribution needs to include more card decks 

to obtain the maximum value on the biased data in Figure 4-5. This problem is also referred 

to as the over-fitting problem [79]. In volume diagnosis, the over-fitting problem generally 

adds extra root causes in the MLE distribution. Sometimes these extra root causes can 

overtake the correct root causes and reduce the success rate to 0%. 
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Figure 4-6 (a) Over-fitting distribution; (b) Under-fitting distribution 

Over-fitting can be alleviated by increasing sample data size, as shown in Table 4-

1 and Table 4-3. In volume diagnosis, the sample size is typically not large enough to avoid 

the over-fitting problem. Therefore, solutions are needed to resolve the over-fitting 

problem. On the other hand, to avoid over-fitting, if more root causes than necessary are 

removed, under-fitting could happen, as shown in Figure 4-6(b). 

Both over-fitting and under-fitting problems reduce success rates. In most 

applications, the correct distribution tends to be less complex, such that it is unlikely to 

have under-fitting problem. When yield is low and quite a few systematic defects exist, the 

correct distribution can have more root causes and under-fitting can happen. For practical 

purposes, the under-fitting problem is not a concern since multiple systematic defects are 

normally fixed one by one during the yield ramp process. 

There are several popular machine learning techniques to deal with the over-fitting 

problem [80]. In this paper, cross validation was used in RCD. The cross-validation process 

is to divide the total sampled data set randomly into N parts. N-1 parts are used as training 

data, and the remaining 1 part is used as a test data. MLE finds the most likely distribution 
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of training data and applied this distribution on testing data to measure its fitness. Repeating 

this process N times with different N-1 combinations getting total fitness and then chooses 

the best distribution based on the total fitness. N can be any integer larger than 1. For 

example, using N=2, sample data in Figure 4-5 are randomly divided into two parts as in 

Figure 4-7(a) with data shown in red and green. Here the red data are used as the training 

data, and the green data are used as the test data. Shown in Figure 4-7(b), (c), (d), different 

variations on the original Bayesian model are used such that their respective MLE finds 

different distributions. In general, these variations should reduce the number of root causes 

used to reduce over-fitting. The fitness of these distributions are obtained based on the 

green test data, as shown in Figure 4-7(e), (f), (g). In this example with 3 variations, it is 

clearly shown that Figure 4-7(d) and Figure 4-7(g) with the most complex curve fits 

training data perfectly, but fits test data poorly (over-fitting). Figure 4-7(b) and Figure 4-

7(e), with the least complex curve, does not fit the training data or the test data (under-

fitting). The fitting distribution that is most similar to underlying distribution fits best in 

test data, as shown in Figure 4-7(c) and Figure 4-7(f). Therefore, over-fitting and under-

fitting problems are avoided based on cross-validation. 
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Figure 4-7 (a) Cross validation 2 fold data; (b) Under-fitting distribution on training data; 
(c) fitting distribution on training data; (d) Over-fitting distribution on training 
data; (e) Under-fitting distribution on test data; (f) Fitting distribution on test 

data; (g) Over-fitting distribution on test data 

The experiments of single picked card deck cases in Table 4-1 and Table 4-3 were 

enhanced to include cross-validation. The results are shown in Table 4-4 and Table 4-6. 

These data show that MLE success rates are improved significantly in all scenarios. The 

result shows the effectiveness of cross-validation for resolving over-fitting problem. The 

experiments of double picked card deck cases in Table 4-2 were enhanced to include cross-

validation. The results are shown in Table 4-5. MLE success rates of all scenarios for two 

picked card decks are also improved significantly, but not as dramatically as the 

improvement for single picked card deck cases. This result shows that increasing the 

number of card decks picked by the genie not only reduces MLE success rate, but also 

reduce the effectiveness of cross-validation. 
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Table 4-4 Single picked card deck with Cross Validation 

Table 4-5 Double picked card decks with Cross Validation 

Table 4-6 Single picked card deck with half sample size with Cross Validation 

Single Root Cause 

Sample size 100 

0% 0% 

~ 

50% 

50% 

~ 

60% 

60% 

~ 

70% 

70% 

~ 

80% 

80% 

~ 

90% 

90% 

~ 

95% 

95% 

~ 

99% 

99% 

~ 

100% 

100% 

Scenario 1  0 0 0 0 0 0 0 15 0 505 

Scenario 2 0 0 0 0 0 0 1 24 0 495 

Scenario 3  0 0 0 0 0 0 0 1 0 519 

Scenario 4 0 0 0 0 0 0 0 0 0 520 

Scenario 5  0 0 0 0 0 0 0 38 0 482 

Multiple Root 
Causes 

Sample size 100 

0% 0% 

~ 

50% 

50% 

~ 

60% 

60% 

~ 

70% 

70% 

~ 

80% 

80% 

~ 

90% 

90% 

~ 

95% 

95% 

~ 

99% 

99% 

~ 

100% 

100% 

Scenario 1  0 0 0 0 0 0 0 31 76 413 

Scenario 2 0 0 0 0 0 2 2 182 206 128 

Scenario 3  0 0 0 0 0 0 0 12 81 427 

Scenario 4 0 0 0 0 0 0 0 12 80 428 

Scenario 5  0 0 0 0 0 0 0 132 148 240 

Single Root Causes 

Sample size 50 

 

0% 0% 

~ 

50% 

50% 

~ 

60% 

60% 

~ 

70% 

70% 

~ 

80% 

80% 

~ 

90% 

90% 

~ 

95% 

95% 

~ 

99% 

99% 

~ 

100% 

100% 

Scenario 1  0 0 0 0 0 0 5 27 0 488 

Scenario 2 0 0 0 0 6 14 9 11 0 480 

Scenario 3  0 0 0 0 0 0 0 3 0 517 

Scenario 4 0 0 0 0 0 0 0 2 0 518 

Scenario 5  0 0 0 0 0 1 20 89 0 410 
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4.6 Conclusion 

In this chapter, a card game model and an investigation of RCD based on card game 

data is discussed. This method of analysis separates the issues of two parts of RCD, creates 

controllable volume diagnosis data and enables a feasible investigation of these two parts. 

The first issue is related to MLE statistical method on a Bayesian network. A simple card 

game is used to produce flexible data with controllable scenarios to investigate over-fitting 

issues, even with a clean Bayesian network, given a limited amount of sample data. Cross-

validation, a machine learning technique, is investigated to mitigate over-fitting issues. The 

second part of the problem concerns how to obtain parameters for the Bayesian network of 

diagnosis data. With an accurate card game model, this issue is avoided in an investigation 

on limited samples. In Chapter 6, a supervised learning method is proposed to solve the 

second problem. 
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CHAPTER V 

IDENTIFICATION OF YIELD LIMITING LAYOUT PATTERNS 

In this chapter, based on pre-extract layout pattern, an enhanced RCD flow is 

proposed and described to identify layout patterns root causes [78]. 

5.1 Introduction and Previous Work 

Achieving quick product yield ramp is highly dependent on quickly identifying 

sources of systematic defects. With advanced manufacturing processes, more systematic 

defects are being caused by specific layout patterns in designs which are hard to fabricate 

[42], [43], [51], [55], [56]. Such layout patterns can cause open or short defects in 

neighboring wires, thus resulting in yield loss. Since each new design may have new layout 

configurations, conventional methods of identifying low yielding layout patterns like test 

chips, SRAMs, etc. are becoming less effective. The most straightforward but time-

consuming way to confirm that a layout pattern is the root of the problem is through 

physical failure analysis (PFA). To do this, the PFA images from various samples have to 

be compared, in order to find any potential commonality in the design associated with the 

defects. This is manual work which requires both experience and good understanding of 

the fabrication process. It also requires good PFA result documentation methodology so 

that design commonalities can be detected across large amounts of samples from a long 

period of time. This is an expensive process. 

More recently, a diagnosis drive yield analysis (DDYA) [38], [40], [43], [47], [48], 

[49], [51], [53], [66] have approach has been proposed to identify layout patterns causing 

systematic yield loss [42], [51], [54], [56]. This method relies on using a large volume of 

scan pattern diagnosis results and analyzing them to identify systematic yield-loss root 

causes. Layout pattern related root cause has be found be more and more crucial to yield 

loss as feature size shrinks ruthlessly at advanced technology node. Layout pattern root 

cause usually has huge amount of types across the design which presents a challenge to 



www.manaraa.com

78 
 

 

statistical analysis because of the possibility of over-fitting. How to address this issue is an 

important test of a DDYA technique. In the following sections, we will review a recent 

work on layout pattern identification and compare it with the solution provided by current 

RCD. 

5.1.1 Previous Work 

Recently, Tam et al. [51], [54] proposed to include layout patterns around each 

diagnosis suspect defect, such that DDYA can be used to identify systematic layout 

patterns as well. Four steps are used: (1) volume diagnosis, (2) layout pattern extraction, 

(3) layout pattern clustering, and (4) layout pattern validation. This work has shown a 

certain degree of success, as demonstrated by its experiment results. More controlled 

simulation experiments were done in [53]. This research shows that with single layout 

pattern systematic defect, the layout pattern will be ranked in the top 40 even when the 

population consists of 80% random defects. To recognize which of these top-ranked layout 

patterns are real, any simulators for yield-loss mechanism, such as lithography simulation 

or CMP simulation, can be used to identify which layout patterns can cause Pattern 

Dependent Systematic (PDS) defects. 

In Step 2 of [51], all layout patterns associated with all diagnosis suspect defects 

are extracted with the following sequences. 

1. Each diagnosis suspect defect polygon is shrunk to center lines based on a 

straight-skeleton algorithm [81]. 

2. Each center line is broken into multiple segments. No overlapping among these 

segments. 

3. One layout pattern is extracted from each segment with the segment at the center. 

In Step 3 of [51], a k-means algorithm is used to do the clustering. The algorithm 

used bitmap cosine function to define the distance between two layout patterns. As pointed 

out in [51], for two patterns to be compared correctly with the bitmap cosine function, 
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pattern alignment is needed. That is the reason for putting defect line segments at the center 

of layout patterns. However, this step is not sufficient. For example, Figure 5-1 shows two 

layout patterns from two different diagnosis suspect of OPEN defect. The defects are at the 

red color nets of (a) and (b). Both nets are quite long, but not exactly the same length. 

Therefore, when they are broken into segments, two patterns can be extracted, as shown in 

(a) and (b), with both red net segments in the center. Using the bitmap cosine function, 

these two patterns can be evaluated as different. In reality, these two layout patterns are 

identical, except one is a shifted version of the other. 

 

Figure 5-1 Shifted layout patterns 

To fix this problem, either more alignments should be done during layout pattern 

extraction, or the pattern comparison function must be able to accommodate shifted 

versions. 

In Step 3 of [51], all layout patterns associated with all diagnosis suspect defect 

locations are inputs to its k-means algorithm. The results of this algorithm will produce k 

clusters of layout patterns by similarity, and each cluster is ranked by its size. However, 

ranking by size may not always be correct since the majority of these layout patterns are 

not really responsible for these diagnosis suspect defects. In our experience, the addition 

of layout patterns in physical properties increases the number of suspect defects in typical 

diagnosis reports of real silicon failures. However, only one suspect is generally a true 
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positive. Therefore, false positive suspects need to be filtered out, and, for this the signal 

to noise ratio should be as high as possible. This chance of false positives is the diagnosis 

ambiguity we discussed earlier. Work in [51] does not address such issues directly, an 

oversight that could lead to overfitting on fake layout patterns. 

5.1.2 Handling Issues of Previous Work 

With the huge amount of layout pattern root causes and existing diagnosis 

ambiguity, overfitting is a serious concern, and is not adequately handled in [51], [53], 

[54]. Below, a better solution provide by RCD is discussed. 

In order to filter out fake layout patterns in diagnosis reports, we propose RCD as 

an advanced statistical technique in [48]. RCD uses a Bayesian net to model the probability 

relationship between all possible defect properties (root causes) over all diagnosis reports. 

It then uses the EM algorithm [70] to find the best-fit root cause distribution that can obtain 

the maximum likelihood estimation of all diagnosis reports used. The experimental results 

show that RCD is able to identify real root causes for 93% simulated cases with single 

systematic defects. With one experiment including a diagnosis population from 3 different 

systematic defects, RCD can identify all 3 root causes correctly. To be successful with 

RCD, it is very important to make use of a correct Bayesian net model with precise 

probability parameters, which can be derived from the design, layout, and scan test patterns 

used, as explained in [48] and discussed in Chapter 4. These probability parameters are 

called RCD constants, defined in Chapter 3. In [49] RCD was put into practical use with 

proper RCD constants in a Bayesian net to successfully identify systematic defects. 

Given the previous success of RCD in dealing with more conventional defect root 

causes, such as opens/shorts on certain metal layers, it is natural to ask whether it can be 

extended to handle layout pattern root causes as well. As mentioned before, the main 

challenge is the huge increase in the number of root causes to consider; they significantly 

increase the chance of overfitting in the Bayesian model used in RCD. The main 
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contribution of the proposed work is to show how this problem can be overcome, and 

demonstrate the application on a real industrial case. The main advantage of our flow as 

compared to the work in [51], [54] is the use of RCD to filter out the majority of fake 

suspect layout patterns in all diagnosis reports. By performing such filtering, RCD gives 

more accurate results. It thus removes the need for the additional Step 4 of the method in 

[51], which involves process simulation to validate layout patterns. In general, after RCD, 

the number of possible layout patterns are minimized such that Step 3 of [51] may not be 

needed. 

The remainder of this chapter is organized as follows. Section 5.2 explains our 

proposed Layout Pattern Analysis (LPA) flow, including details of automatic layout 

patterns extraction and RCD operation. A control experiment is conducted to show the 

impact from including layout pattern root cause on non-layout pattern root causes. Section 

5.3 describe the general procedure of defect injection for the control experiment; the result 

of the control experiment in section 5.4 shows that RCD can effectively identify both layout 

pattern and non-layout pattern root cause. Section 5.5 uses one real silicon case with a test 

chip data to validate the flow and present the analysis results, including PFA findings. 

Section 4 5.6 draws conclusions. 

5.2 Layout Pattern Analysis (LPA) Flow 

In this section, we proposed a layout pattern analysis (LPA) flow that builds upon 

existing RCD flow, with extra handling of layout pattern root cause. Section 5.2.1 and 5.2.2 

below provide details of extracting pattern from layout. Section 5.2.3 discusses how RCD 

deals with the impact on statistical modeling from introducing layout pattern root causes. 

The challenge of a huge number of root cause types, mentioned above, will be addressed.  

As shown in Figure 5-2, the LPA flow consists of three major steps: layout-aware 

volume diagnosis, layout pattern extraction with layout pattern matching as an option, and 

RCD based statistical analysis. Compared with regular DDYA flow, described in Chapter 
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3, LPA uses the same input data, which include design, layout, scan test patterns and ATE 

failure files. Layout database (LDB) is the database containing a matching table between 

the design logics and its layout. Unlike in [51], all layout pattern extraction work is done 

before volume diagnosis. This is done to avoid performing layout-pattern extraction 

repeatedly for each diagnosis suspect, and to reduce the run time for volume diagnosis. For 

LPA, LDB is expanded to store the results of automatic layout pattern extraction before 

volume diagnosis. In other words, layout patterns are extracted based on layout only, and 

are independent of diagnosis suspect defect locations. The goal is to extract all unique 

layout patterns around any location that could be the site of a physical defect. Currently, 

only interconnect layout patterns are included. Cell internal layout patterns will not be 

discussed in this work. With this pre-extraction step, diagnosis can be performed by 

looking up only the layout patterns associated with suspects in the diagnosis results. 

 

 

Figure 5-2 Proposed layout pattern analysis flow 
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5.2.1 Automatic Layout Pattern Extraction 

The basic concept here is to first find all possible points that can have open defects 

or bridge defects. Each of the identified points is called a point of interest (POI). Once all 

the POIs have been discovered, a layout pattern window is projected around each point, 

and the contained polygons are extracted to form the layout pattern of each POI, as shown 

in Figure 5-3. The widow size is based on a pre-defined area of influence. All layout 

patterns are stored in LDB with RTree [82] information, such that later diagnosis suspect 

location can efficiently match these layout patterns. 

 

Figure 5-3 Layout pattern window formation 

It should be noted that layout patterns extracted in [51] do not allow overlapping 

with each other. In our approach here, two POIs can be closer than their window size such 

that their layout patterns can overlap. This avoids the problem mentioned in [51] that some 

layout patterns at the boundary can be missing in their approach.  

The POI identification algorithm proceeds through all metal layers in the layout. 

On each layer, all layout rectangles associated with a net are merged to form a single 

polygon. 
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Figure 5-4 Inner points that can be open locations 

Step 1 (Open POI definition): Determining an initial set of potential open defects 

that may occur within the polygon. For example, in Figure 5-4, we first identify inner points 

that represent potential OPEN defect locations when there is shape disruption in the net 

itself. 

Step 2 (Define Bridge POI definition): Each of these inner points identified at step 

1 is projected in 4 orthogonal directions to discover intersections with other polygons, as 

shown in Figure 5-5. The projection distance is determined by the pitch and track or mental 

width layout information. Intersected polygons will have a new projected disruption point, 

defined as shown with ‘*’ in Figure 5-5. The spanning distance between the source and 

destination polygons adds an additional BRIDGE disruption point, shown as ‘b’ in Figure 

5-5. 
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Figure 5-5 Projections adds more POIs 

Since POIs are based on their layout environment with disruption, layout patterns 

from these POIs generally do not have the alignment problem found in [51]. Nevertheless, 

optional layout pattern matching allows users to match non-identical layout patterns that 

they believe have the same manufacture process effects. It should be noted that, similar to 

layout pattern extraction, pattern matching here is independent of diagnosis results, such 

that it can be done up-front before volume diagnosis. The pattern clustering in [51], by 

contrast, is based on diagnosis reports and can be contaminated due to a large number of 

fake layout patterns in diagnosis reports. 

5.2.2 Pattern Matching 

Here, basic pattern matching allows two patterns to be recognized as identical if 

they are shifted, rotated, scaled, or mirrored versions of each other. To simplify the process, 

we transform all patterns into their canonical form first. It is important to make sure that 

there is one and only one canonical form for all patterns that can be identical after any 

number of shift, rotate, mirror, and scale operations. The details of calculating canonical 

form of a given pattern are left out due to brevity. 
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5.2.3 RCD with Layout Patterns 

Each extracted unique layout pattern stands for an instance of canonical form and 

is assigned a unique ID, which represents a possible systematic defect root cause. For all 

unique layout patterns, of which there could be tens of millions for one design, their IDs 

and associated layout polygons are stored in the LDB. To reduce RCD run time, all layout 

related RCD constants of each root cause are pre-calculated and stored in LDB as well. 

Each root cause could be a layout pattern, via type, cell type and critical area. The layout-

aware diagnosis finds physical suspects for each failure file and correlates them with all 

physical properties, including layout patterns. If optional layout pattern matching is used 

to group several individual unique layout patterns, each group is treated as one root cause 

in RCD. All RCD constants of each group need to be adjusted based on the constants of its 

members. 

RCD run should be the same with and without layout patterns, except that the 

following special handlings are needed to maintain RCD performance. 

5.2.3.1 Huge number of root causes 

This is one of challenges that could impact accuracy of RCD. With limited sample 

size, more root causes will increase the chance of seeing more fake root causes for each 

report, as we discussed in our analysis of the card game model.  

It should be noted that without layout patterns, typically the number of root causes 

is less than 100. With layout patterns, the number of root causes can be around one billion 

for a 30 million-gate digital design, due to the presence of so many unique layout patterns 

in current-day designs. Even when one uses layout pattern matching to group some 

patterns, the number of root causes is still quite large, while a majority of root causes are 

not associated with any suspects of all diagnosis reports. However, even if only 1% of the 

extracted layout patterns are associated with diagnosis results, the number of root causes 

is still quite large. This large number of causes significantly affects the run time and 
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memory usage of RCD. To overcome this issue, we exploit the fact that even when the 

number of root causes is large, a majority appear only in a small number of diagnosis 

reports. This fact is illustrated in Figure 5-6 below, which plots the occurrence rate of 

layout patterns in 200 diagnosis reports from a population of dies with a single layout 

pattern yield limiter. As can be seen, all but one layout patterns occur in fewer than 75 

reports, and most layout patterns (>5000) occur only in a single report. 

More root causes also create a higher chance of over-fitting. Again, RCD takes 

advantage of the fact that most of these root causes have a sparse existence, and they are 

most likely can be filtered out. With that being said, a large number of root causes might 

still impact the RCD result in the context of limited sample size, according to the 

conclusion of the card game investigation discussed in Chapter 4. Therefore, a controlled 

experiment is a good way to evaluate such impact and validate proposed LPA flow. 

 

Figure 5-6 most layout patterns occur in only a very few diagnosis reports 
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5.2.3.2 Equivalent Root Cause  

To ensure that all layout patterns are included in the RCD process, all layout 

disruption points are considered in POI identification. For example, in Figure 5-7, the 

polygon in red has 7 layout patterns extracted. In RCD, that means that this suspect can be 

explained by these 7 root causes. If this red-colored net segment is a systematic defect, all 

7 layout patterns could be the root causes. If these 7 patterns are used only used in this red-

colored net segment systematic defect, these 7 layout patterns cannot be distinguished 

statistically among themselves. Here we call them (statistically) equivalent layout patterns. 

It should be noted that they are not the same as pattern groups identified from pattern 

matching. Unlike in the use of logic diagnosis to report all equivalent faults with same high 

score, the best fit root cause distribution found by RCD will share probability among these 

statistically equivalent root causes. For example, suppose that 70% of systematic defects 

are caused by one of these 7 layout patterns and 30% of random defects are caused by 

others. Since RCD cannot distinguish these 7 layout patterns, it is possible that each one 

will be assigned only a 10% probability and may not rank higher than random defect layout 

patterns. These non-distinguishable root causes are called equivalent root causes in RCD. 

To fix this problem, all equivalent root causes should be identified and only one 

representative root cause is kept in RCD operation. Thus all 70% probability is credited to 

this representative root cause. In the final report, non-representative layout patterns root 

causes can be identified by their representative layout pattern. After RCD is done, in 

general, the number of systematic defects left should be very small. To further narrow 

down any remaining similar patterns, pattern clustering of [51] can be used. 



www.manaraa.com

89 
 

 

 

Figure 5-7 Non-distinguishable Root Cause 

5.3 Defect Injection Procedures 

Section 5.4 describes a controlled experiment that was conducted on LPA flow. 

The experiment was intended to illustrate the effectiveness of proposed LPA flow in 

identifying layout pattern root causes, and to evaluate the impact of including a large 

number of layout-pattern root causes on LPA’s ability to distinguish them from non-layout-

pattern root causes. In this section, we will first present the general step of the defect 

injection, and explain each step in detail.  

5.3.1 General Steps of Defect Injection Experiment 

The general steps of defect injection and the details of each step are presented 

below. The training data used in the supervised learning method in Chapter 6 also are 

created following these general steps, with some changes to the fault model and root cause 

used.  

1. Pick a design, define a candidate root cause list and calculate feature weight 

distribution/defect distribution, as mentioned in Chapter 3. This is a one-time-cost 

step for each design. In the layout pattern experiment, layout pattern extraction is 

done in this step. 

2. Specify a root cause distribution and sample size (population size) N based on step 

1.  
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3. Randomly select instances/defects of specified root causes following defect 

distribution calculated in step 1. This is random sampling with replacement.  

4. Inject the sampled defects.  

5. Perform fault simulation on the circuit with injected defects.  

6. Repeat steps 3-5 N times. 

7. Perform layout aware volume diagnosis [14], [16]based on N fail logs.  

8. Statistically analyze the volume diagnosis results using RCD to obtain the 

estimated root cause distribution.  

9. Compare the estimated root cause distribution and the specified injected root cause 

distribution. Based on that, accuracy of RCD is collected.  

5.3.2 Pre-defined Root Cause List 

The predefined candidate root cause list represents possible causes of defects that 

might occur in a die. This root cause list need not be an exhaustive list of all possible root 

causes. Depending on the information we have on the failing population and purpose of 

experiment, the root cause list consists of root causes we are interested in. The root causes 

include open or bridge root causes on interconnect mental layers, open root cause on 

interconnect via layers, and cell related defects. Count-based and critical-area-based root 

cause models are used to model defects caused by random particles on certain layers, 

prone-to-fail physical structures, and library cell types. For a count based modeled root 

cause, the probability of each root cause instance being defective is the same. For critical 

area based modeled root cause, the probability of each root cause instance being defective 

depends on the size of a defect’s critical area. The following are 4 types of root cause model 

used in experiments.  

1. Critical area model (bridge/open defects on metal layer): Model of a defect 

caused by random particles on a specific layer. Critical area of each defect is 

estimated based on particle size and layout structure around defect sites by a 
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certain distribution model. The critical area of a defect is used as the feature 

weight of root causes associated with that suspect. 

2. Count model (open via macro and cell type): Model of a systematic defect 

inside the library cell or on via. Count is used as feature weight. A cell is a 

collection of connected transistors providing the logic function in a circuit. 

Open and bridge defects happen inside the cell, causing a defective cell. In 

controlled experiments discussed in this chapter, cell internal root causes are 

not considered. Each type of cell is considered an individual root case. This 

means even two cells of the same type might be defective due to different cell 

internal root causes; in such a case we would consider them to have failed due 

to the same root cause. This is an approximation for the root cause of a defective 

cell, and further investigation on dealing with cell internal root causes will be 

presented in Chapter 6.  

3. One cell area model: Model of a defective cell regardless of which cell internal 

defect and cell type cause it. The physical area of the cell is used as feature 

weight to measure the probability. 

4. Layout pattern model (open/bridge defect): Model of a defect caused by prone-

to-fail physical structures. As discussion in Section 5.2.2, a layout pattern is a 

group of layout shapes sharing common features. Each layout pattern is a group 

of layout shapes that are exactly the same after rotation, shifting and/or flipping. 

Based on proposed layout pattern extraction and pattern matching algorithm, 

each shape has the exact same size as others. Each shape in this group is referred 

to as an instance of this layout pattern. Figure 5-8 shows two extracted layout 

patterns that are used in our experiments. The red point indicates the defect 

location.  
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Figure 5-8 Example of layout pattern extracted from layout 

In the following discussion, critical area open/bridge are referred to as root causes 

modeled by critical area as 1st model in the above list and layout pattern open/bridge are 

referred to as layout pattern root causes as 4th model in the four root cause models listed 

above.  

5.3.3 Step 2 - Random Sampling 

A root cause instance is picked randomly based on its feature weight. Each instance 

of that root cause is a possible defect site triggered by this root cause, and is associate with 

a physical defect. In the injection experiment, we also refer to it as a defect of that root 

cause. Random sampling is done based on this feature weight distribution for each root 

cause defined in Chapter 3.  

The feature weight of all layout pattern instances is the same. Each instance of a 

layout pattern represents a physical structure that would have the same chance of being 

defective under the same condition. Each layout pattern instance will have the same chance 

of being sampled. Therefore, for layout pattern injection, all instances are injected.  

The feature weight of a defect modeled by critical area is calculated based on the 

size of its critical area. So, a root cause instance/defect with a larger critical area will be 

more likely to be sampled. The probability that a region on a layout is defective depends 
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on the size of its critical area, since contamination particles are more likely to cause defect 

on a region with a larger critical area.  

5.3.4 Step 3 - Defect Injection 

For experiment done in this chapter, defect injection is done by modifying the flat 

model of the circuit in logic simulation. Additionally, for the training data created in 

Chapter 6, defect of cell internal root cause is injected by SPICE simulation. 

Bridge defect injection: A bridge defect is a short occurring between two 

neighboring nets. In our experiment, we use a wired-AND gate and a dominant bridge 

model. First, we identify the neighboring nets of sampled instances. Then a wired-AND 

gate is placed between the nets. If one of the nets is a ground/power line, it is considered 

the aggressor of dominant fault, and a stuck-at 0/1 fault is injected on the other net as victim 

being dominated by ground/power line. 

Open defect injection: An open defect happens when there is a break on the layout 

net. An open defect on one segment of a net will affect all branch pins driven by this 

segment. First, we locate the defect segment and then trace down all branch pins of this 

segment. Lastly, we inject a stuck-at-1 fault on the defective segment and all pins driven 

by the defective segment. 

5.4 Controlled Experiment  

5.4.1 Objective  

Layout pattern root causes have an enormous number of types; this wide variety 

can lead to overfitting in analysis results. The proposed enhanced RCD flow with LPA is 

expected to extract and group layout shape features, filter out fake layout pattern root 

causes, and identify the underlying layout pattern root cause. To validate such expectation 

of RCD, we inject defects of layout pattern root causes and validate whether they can be 

successful identified. Furthermore, bringing such huge number of candidate root causes 
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could also have a negative impact on accuracy of RCD for non-layout pattern root causes. 

To evaluate such impact, we also injected defects of non-layout pattern root causes and 

compare the accuracy of RCD including and excluding the huge number of layout pattern 

root causes.  

5.4.2 Experiment Setting  

In this experiment, we use an industry design. The candidate root cause set includes 

open and bridge critical area root causes on interconnect layer, open root cause on via layer, 

cell-type root cause and layout pattern root cause.  

Layout pattern root cause injection: This experiment simulates root cause 

distribution estimation of defects caused by prone-to-fail layout structure. A 100% single 

layout-pattern root cause is specified as injected root cause distribution. A total of 345 

layout patterns, including bridge pattern and open pattern, each of which has more than 50 

instances, are injected. For each layout pattern, all instances are injected and each instance 

is injected only once. The sample size of each layout pattern is its diagnosable instance 

counts.  

Non-layout pattern root cause injection: This experiment simulates root cause 

distribution estimation of defects caused by random particle contamination on metal layer. 

A 100% single critical area root cause on mental layer is specified as injected root cause 

distribution. Open and bridge defects modeled by critical area are injected on all metal 

layers (layer 1, 3, 5, 7, 9) in this design. In the following discussion, critical area open and 

critical area bridge are used as root cause types, referring to root causes of open and bridge 

defects in interconnect layers modeled by critical area. Injected defects/root cause instances 

are randomly selected with replacement based on the size of their critical area. The one 

with a larger critical area is more likely to be selected. Two sets of candidate root causes 

are specified: including and excluding layout patterns. For each injected root cause, 20 
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cases with different sample size are created. The samples are created by incrementally 

increasing from 50 to 1000, adding 50 more data points randomly each time. 

Success criteria: The accuracy of RCD result is defined as the value of probability 

of injected root cause in distribution. For each case of injected root cause, RCD is 

considered to successfully identify the root cause as the dominant one if the probability of 

the injected root cause in the RCD result is at least 50%. If that probability is less than 

50%, but the root cause is ranked at the top in estimated probability distribution, we 

considered RCD to have successfully identified the injected root cause. Ranking is done 

by sorting each root cause by its probability in descending order. 

5.4.3 Result  

Layout patter injection: As shown in Table 5-1, for bridge layout patterns, 100% 

injected root causes are successfully identified. For open layout patterns, 99.5% of injected 

root cause are successfully identified. The effectiveness of enhanced RCD in identifying 

layout pattern root cause are validated. 

Table 5-1 Results of layout pattern injection experiment 

All instances of root cause 
injected 

Bridge layout pattern 
injection 

Open layout pattern 
injection 

Successful injected patterns 139 206 

> 66.7 % accuracy  138 (99.3%) 205 (99.5%) 

> 50 % accuracy  139 (100%) 205 (99.5%) 

< 50 % accuracy  0 (%) 1 (0.5%) 

Critical area injection excluding layout pattern root causes: Accuracy of RCD of 

injected critical area open and bridge excluding layout pattern root causes are shown in 

Figure 5-9 and Figure 5-11. All injected root causes are successfully identified with an 

accuracy higher than 90% for bridge and 66% for open. 
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Critical area injection including layout pattern root causes: Accuracy of RCD of 

injected critical area open and bridge excluding layout pattern root causes are shown in 

Figure 5-10 and Figure 5-12. We saw some negative impact from including layout patterns, 

but overall, RCD can still effectively identify non-layout pattern root causes in contexts 

where there are many layout-pattern root causes. In 31 out of 200 cases, accuracy dropped 

lower than 50%, but in 219 out of 200 cases, the injected root causes was ranked at #1. 

 

Figure 5-9 RCD result as sample size increases: Critical area open injection excluding 
layout patterns as candidate root causes 
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Figure 5-10 RCD result as sample size increases: Critical area open injection including 
layout patterns as candidate root causes 

 

Figure 5-11 RCD result as sample size increases: Critical area bridge injection excluding 
layout patterns as candidate root causes 
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Figure 5-12 RCD result as sample size increases: Critical area bridge injection including 
layout patterns as candidate root causes 

5.4.4 Discussion  

As discussed in Chapter 4, limited sample size, larger numbers of fake root causes 

per report, higher probability of seeing a defect given a fake root cause (P(d|fake root 

cause)), and more sample outliers would all have a negative impact on the accuracy of 

MLE. Below, we discuss three crucial factors in critical area injections, including layout 

pattern root causes.  

Number of fake root causes per report and smaller P(d|fake root cause): As more 

layout pattern root causes are introduced, the number of candidate fake root causes per 

report likely increases. As an example, take open layer 9, with a sample size of 1000. In 

this case, when layout-pattern root causes are included, the called-out candidate root causes 

increase in number by 75189%. P(d|fake root cause) for layout pattern root cause is usually 

much higher than for critical area root cause because the possible defects’ number is much 

smaller. Accordingly, layout pattern root causes usually have lower occurrence than critical 

area root cause. Occurrence of each root cause is expected to follow the underlying 

distribution P(d|root cause). When samples are limited and biased, occurrence of layout 
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pattern root causes could be higher than it is expected to. Therefore, MLE might be 

overfitting to some layout pattern root causes by including them as possible root causes. 

The controlled results show that even with negative impact from these two factors, RCD 

still successfully identifies injected non-layout pattern root causes, with some sacrifice on 

accuracy. 

Outlier impacts: The diagnosis accuracy was not perfect in our injections 

experiment. There are wrong diagnosis reports, which we call outliers in diagnosis data. 

Outliers bring distortion into samples. For all 21 cases of layer 7 and layer 9 where RCD 

accuracy is less than 50%, including layout pattern root causes, after removing the outliers 

(wrong reports) accuracy of 13 cases rose to higher than 50%. Meanwhile, the accuracy of 

these 21 cases is always higher than 50% if we exclude layout pattern root causes and keeps 

outliers, as shown in Figure 5-9 and Figure 5-11. This result shows that the low accuracy 

is from negative impact of outliers. After including layout pattern root causes, such impact 

from outliers is more severe than excluding layout pattern root causes. 

5.4.5 Conclusion 

Controlled experiments show that the enhanced RCD flow with automatically 

extracted layout pattern correctly identify injected layout pattern root causes. With a large 

number of layout pattern root causes included, the effectiveness of RCD for non-layout 

pattern root causes is also validated, with some tradeoff on accuracy. 

5.5 Silicon Data Validation 

5.5.1 Setting  

A leading-edge technology test chip is selected to validate the methodology and 

flow. This test-chip design has 12 cores, and each core design has roughly 1 million gates. 

To perform RCD statistical analysis, it is recommended to have at least 100 failure files 

per root cause. As it is hard to know up front how many root causes exist, a good starting 
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point is to have several hundreds of failure files. We collected 425 failure files from two 

wafers of the same lot. There are 4 dies with PFA results based on layout-aware diagnosis, 

and they are all from core3.  

Running layout pattern extraction: The LPA algorithm is implemented in a 

Mentor Graphics tool, and we ran through the layout pattern extraction on the full design 

for each interconnect layer stored in the existing standard LDB. By using the default project 

distance, which is 2X of pitch multiplier for both bridge and open layout pattern extraction, 

we successfully extracted 14.8 million unique layout patterns in 24 hours. This number 

could be different when a smaller or greater pitch multiplier is used. Theoretically, the 

greater the pitch multiplier, the more unique the extracted layout patterns, which may 

impact the RCD analysis resolution on layout patterns.  

Once the LDB is updated with extracted layout patterns, the RCD constants were 

generated for each core and were updated into the LDB. As explained in our prior work 

[48], RCD root cause constants consider scan test patterns used to make sure that defects 

triggered by these root causes can be detected during testing on ATE. All the above flow 

usually involves a one-time setup for existing design and its test pattern sets. 

Running layout aware diagnosis: With the new LDB, the layout-aware diagnosis 

was performed based on each core, and the 425 failure file diagnosis took a couple of hours. 

The diagnosis engine checked each suspect bounding box against layout patterns stored in 

the LDB and listed them in the diagnosis report. RCD constants were saved in diagnosis 

reports as well. 

Running RCD statistical analysis: Diagnosis of 425 failure files results in a total 

of 859 diagnosis symptoms, and each symptom represents a potential defect location. 

When the diagnosis reports were loaded into RCD, we identified a total of 4,9060 unique 

layout patterns associated with all diagnosis suspect defects. The final RCD analysis result 

is presented in a “RCD-sum of probability” pareto, shown in Figure 5-13. 
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Figure 5-13 Pareto for RCD root causes 

There are 108 total root causes listed, compared with 49,060 layout patterns that hit 

the diagnosis suspects before RCD analysis. This list also includes some via and cell type 

related root causes. M4 OpenPattern 15980827 and its four equivalent layout patterns (M2 

OpenPatterns 1368083, 1368084, 1368086 and 1368087) dominate the root cause pareto 

and others mitigate quickly, a result which suggests that one or more of the 5 equivalent 

layout patterns could be the root cause of a systematic defect. The zoomed-in view of these 

layout patterns is shown in Figure 5-14. Please note that in the figure below, two pairs of 

layout patterns are shifted versions of each other. These layout patterns will be matched by 

the basic matching process. 

 

Figure 5-14 Zoom-in view of 5 equivalent layout patterns from the top list 
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5.5.2 Silicon Data Validation Result 

Correlating flow results with PFA data: From the above step, the RCD gives a 

list of dies containing these 5 equivalent layout patterns, and the die is sorted based on the 

most suitable suspect for PFA. We checked the 4 dies with available PFA results and found 

3 of them (X19Y3, X11Y2 and X19Y4) were on the list. Here, we use die X19Y3 as an 

example to illustrate our findings, shown in Figure 5-15, Figure 5-16, and Figure 5-17. 

 

Figure 5-15 Searching area without layout-aware diagnosis 

The diagnosis result of die X19Y3 shows 1 symptom and 4 suspects with 37 layout 

pattern hits, including the 5 equivalent ones. Without layout-aware diagnosis and LPA, the 

suspects from logic diagnosis run across a large area (blue circle in Figure 5-15), a result 

which provides little information for root cause and PFA. With layout-aware diagnosis, the 

suspect polygons represent a much smaller searching area (white cycle in Figure 5-15).  
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Figure 5-16 M4 OpenPattern 15980827 highlighted by POI 

 

Figure 5-17 M2 OpenPattern highlighted by blue POI 

With layout pattern extraction, the analysis can be focused on all the layout patterns 

hit by the diagnosis (37 of them), but fails to find information on what the root causes are. 

With LPA, the top root cause of 5 equivalent patterns is identified first by the RCD (Figure 

5-13). The following analysis and PFA validation focuses on the RCD selected dies with 
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the hit of 5 equivalent layout patterns and their surrounding areas. In this case, they are M4 

OpenPattern 15980827, shown in Figure 5-16 , M2 OpenPattern 1368086/1368087, 

highlighted on the right in Figure 5-17, and M2 1368083/1368084, shown at left in Figure 

5-17. The center of each individual layout pattern is flagged by a small square or POI. In 

Figure 5-17, other layout patterns are represented by the pink POIs; analysis of these is 

skipped since they are not considered as root causes by RCD. 

 

Figure 5-18 PFA results for 3 dies 

The PFA results of the three dies are in Figure 5-18, showing that the real defects 

are missing via, with its location correlated to M2 OpenPattern 1368086/1368087. Though 

the PFA images in Figure 5-18 show only the M1 and via, which seems to be a via issue 

on the jog M1, it is very interesting to find out later on that the missing or under-sized via 

was indeed triggered by the identified M2 open pattern. For the specific wafers tested, the 

M2 shapes identified by M2 OpenPattern 1368086/1368087 had abnormal shrinkage, 

which blocked the proper formation of the via underneath. 

Silicon result summary: In this presented test case, LPA flow automates the layout 

pattern extraction process based on self-contained data used for layout-aware diagnosis. 
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RCD conducts a thorough analysis on the layout patterns and greatly improves the 

resolution of root cause identification for systematic defects (Table 5-2).  

Table 5-2 systematic defect identification resolution improvement 

 

LPA flow can also be used for die/suspect picking since it helps narrow down the 

PFA searching area as well. Table 5-3 shows the comparison. The total time spent on from 

going through the LPA flow to PFA validation of identified root causes can be completed 

within one week. 

Table 5-3 PFA candidate searching area reduced 
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5.6 Conclusion  

In this chapter we present enhancements to the RCD flow that enable it to overcome 

potentially weaknesses and identify, correctly and automatically, the layout patterns 

causing systematic yield loss. We discussed several innovative enhancements on top of 

layout pattern systematic defect analysis, with volume diagnosis proposed in [51]. A 

controlled experiment was conducted to validate the effect on identifying both layout 

patterns root cause and non-layout pattern root cause when including layout pattern root 

causes as candidate root causes. With real silicon data, we have demonstrated the 

practicality of this work flow, with its huge advantage in efficiency and turnaround time in 

layout-related systematic defect identification. A layout pattern is identified by LPA and 

was validated by PFA to be the dominant yield loss mechanism. 
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CHAPTER VI 

SUPERVISED LEARNING BASED RCD USING VOLUME CELL-

AWARE DIAGNOSIS 

In this chapter, to address the aggravated parameter issue brought by including cell 

internal root cause in RCD, a supervised machine-learning algorithm is proposed to 

accurately learn RCD model parameters from labeled training data. 

6.1 Introduction 

Logic diagnosis [8-13] has been used to determine the most likely defect locations 

and defect mechanisms for a defective device with scan-test failure data. Recent advances 

in scan diagnosis technologies include use of more physical information, such as layout-

aware diagnosis [14-16], cell-internal diagnosis [17-20], and cell-aware diagnosis [21-22]. 

This additional information helps improve diagnosis resolution. Such diagnosis results 

have been used successfully to guide physical failure analysis (PFA) to focus on a much 

smaller area and identify a given physical feature. Such identified features include, but are 

not limited to, defect type (open, short), defect layer, via macro type, cell type, critical area, 

defect shape, specific layout pattern and specific DFM (design for manufacturability) rule. 

Diagnosis tools typically consider each failing die separately and produce a 

diagnosis report per die. Several papers [38], [40], [43], [47], [48], [49], [51], [53], [66] 

have demonstrated that we can apply statistical analysis on volume diagnosis data (i.e. on 

a collection of diagnosis reports), to identify a set of common physical defect features or 

root causes. Yield can be substantially improved by fixing the common root cause(s). RCD 

[48], [77] is one such statistical analysis technique that uses an unsupervised Bayesian 

model, and has proven very effective for identifying interconnect, cell-type and layout-

pattern root causes using volume diagnosis. At a high level, RCD’s input consists of, for 

each diagnosis report, a certain set of values, which parameterize the Bayesian model. RCD 
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combines all this information from individual diagnosis reports and endeavors to give a 

root-cause distribution that best explains all these reports. 

For advanced technology nodes, cells require multiple process steps and have more 

complicated transistor/routing structures. This added complexity leads to more root causes 

and more subtle defect behaviors for cell-internal defects. Due to increased complexity and 

smaller feature size, it is becoming increasingly difficult to accurately identify cell-internal 

root causes. At the same time, cell-internal root causes are becoming more prevalent as 

yield limiting factors. Due to several reasons discussed in Section 6.2 below, in order to 

extend RCD to support cell-internal root causes, we need a better way to compute the input 

parameters of RCD, on a per-diagnosis-report basis. One way to do this is to gain more 

expertise with and domain knowledge of cell-internal root causes. In this chapter, we 

propose an alternate approach for learning these input parameters. We show that supervised 

machine learning techniques can be used effectively to learn these model parameters from 

training data. Once we have a better estimate of these parameters, we plug these back into 

RCD and obtain accurate results, as described in the results section later in the chapter. The 

use of supervised learning methods at an individual diagnosis-report level, followed by 

using unsupervised learning methods (e.g. RCD) at the volume level, is a novel idea and is 

one of the key contributions of this work. 

This rest of the chapter is organized as follows: In section 6.2, a high-level 

description of RCD and the targeted RCD model parameters are given. Additionally, the 

problems that arise when trying to identify cell-internal root causes are explained. Section 

6.3 gives an overview of supervised machine learning. Section 6.4 contains the main 

technical contributions of this chapter. We describe our use of supervised learning, 

including how we generate training data, and our learning algorithm. A flowchart is 

provided to illustrate changes made to RCD flow. Experimental setup and experiments 

conducted to validate the proposed method are presented in Sections 6.5 and 6.6. In Section 
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6.7 we demonstrate the effectiveness of our method on real silicon data. Section 6.8 

concludes the chapter. 

6.2 Background and Problem Motivation 

Due to design complexity and the use of a limited number of test patterns, diagnosis 

reports often have multiple faults, defects, and root causes. As a result of this diagnosis 

ambiguity, we cannot get simply sum up the root causes in each report to get the correct 

root-cause distribution. In [48], [77], a new method called root cause deconvolution (RCD) 

was presented to address this problem. RCD constructs a Bayesian network model and uses 

the information in the diagnosis reports to do inference to figure out the underlying root-

cause distribution. RCD and the Bayesian network model for volume diagnosis have been 

discussed and described in detail in Chapter 3. In the discussion below, we will present a 

brief review of how we obtained the information we used in the RCD model from diagnosis 

reports. We will then re-visit the parameters of the Bayesian network model. 

Possible Defect locations: Layout-aware diagnosis extracts all possible defect 

locations or physical suspects based on layout. For an open defect, the location is a segment 

of a net (set of polygons). It is expected that the faulty behavior will be the same if a defect 

occurs on any part of the segment. For a bridge defect, the location is a pair of nets. 

Similarly, the faulty behavior is expected to be the same if a defect occurs at any location 

between this pair of nets. 

Diagnosis procedure: Logic diagnosis takes in the response of test patterns applied 

to defective die (injected or real defect), traces back to potential fault sites, performs fault 

simulation on the faulty sites, and ranks the potential fault sites based on how well each 

modeled fault simulation response fits the observed output response. Top-ranked fault sites 

will be reported with ranking scores. Each faulty site is termed a fault in the diagnosis 

report. Layout-aware diagnosis then matched possible defect sites extracted from layout 

with the logic faults. During the matching, many logic faults will be excluded. For example, 



www.manaraa.com

110 
 

 

a pair of bridging nets, which have the same failure behavior as observed, will not be 

reported. It is because they are too far away to cause a short between signal lines. For an 

open defect, it can locate which segment best matched the defect behavior. These physical 

defect sites (segment or net pair) are physical suspects or defects associated with each fault 

in the diagnosis report. Lastly, for each physical defect reported, the possible root causes 

of that defect that might occur on each layer at that location are reported. For each root 

cause, the exact location of the actual defect can differ. Using an open defect as an example, 

a defective segment (reported as open defect) could consist of a set of polygons of metal 

layer one and a different set polygons of metal layer two. Accordingly, polygons of metal 

layer one/two would be defined as a root cause instance of open root cause on layer 

one/two.  

Probability of defect occurring: In the RCD probability model, we calculated the 

probability of a defect occurring for each possible defect that is caused by a given root 

cause. First, we list all instances of that root cause. As explained above, each root-cause 

instance is associated with a physical defect. For one root cause, probability of a root-cause 

instance occurring is the same as the probability of its associated defect occurring. We 

assume that each instance of a given root cause occurs with certain probability. This 

probability is proportional to an assigned weight of each instance of the given root cause. 

The sum of weights of all instances of a root cause is defined as the RCD constant of that 

root cause. The probability of a specific defect occurring given a root cause is calculated 

as the weight of an instance of given root cause divided by RCD constants of the given root 

cause. That particular root-cause instance need be associated with the specified defect.  

Given different root causes, the probability of the same defect occurring differs.  In the 

discussion following, an instance of given root cause will also be called a defect instance 

or a defect of that root cause.  
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Defect occurring assumption: The weight of each defect instance given a root cause 

is calculated based on assumptions about how defects occur. These assumptions are the 

following: 

1. Defects on metal layers are caused by random particles. A random particle 

causes an open defect if it lands on a net, and a bridge defect if it lands between 

two neighboring nets.  

2. Open defects on via are caused by malformation or missing via.  

3. Open and short defects are caused by certain hard-to-fabricate layout shapes.  

Based on the above assumptions, the weight of an instance can be calculated as 

critical-area-based and count-based:  

1. Critical-area-based: Critical area is calculated for each polygon in a segment 

(for open defects) and for each net pair (for bridge defects). The critical area of 

a segment is the sum of critical areas of all polygons in that segment. The weight 

of each defect caused by open or bridge root cause on a specific layer is 

proportional to the critical area of that segment, or the net pair of that layer. 

2. Count-based: For root causes such as layout pattern and via type, with the same 

manufacturing process, each instance of a root cause is considered to have the 

same chance of being defective. The weights of instances of these two types of 

root cause are all the same. We used count as weight. For example, if there are 

two via instance of the same via type located at the same segment of net, the 

weight will be two. 

Below, we will explain how parameters in RCD models are estimated based on the 

above information and assumptions. 

Let P(v) be the probability of observing the given set of volume diagnosis reports. 

The RCD model tries to find a root-cause distribution that will maximize P(v). It expresses 

P(v) as the product of the probability of observing the individual diagnosis reports (P(r)). 

It further breaks down P(r) into several parameters, P(r|f), P(f|d) and P(d|c). We consider 
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a re-parameterization of the RCD model, and express the probability of observing each 

report as follows: 

𝑃(𝑟) = ∑𝑃(𝑟, 𝑐𝑛)

𝑁

𝑛=1

 

                   = ∑𝑃(𝑟|𝑐𝑛)𝑃(𝑐𝑛)
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where 𝑐𝑛  is the nth root cause, and we sum over all possible root causes. 𝑃(𝑐𝑛) is the 

probability of 𝑐𝑛  being the real root cause. 𝑃(𝑟|𝑐𝑛)  is the conditional probability of 

observing the report r, when the real root cause is 𝑐𝑛. fi is the ith fault. dj is the jth defect. 

The first equality holds because the root causes (c) are assumed to be mutually exclusive, 

and their probabilities (P(c)) add up to 1 [74]. The second equality follows from the chain 

rule of probability [75]. In RCD, we are interested in finding the root-cause distribution, 

i.e. the value of P(c) for every root cause c. With the above re-parameterization, we have 

captured all the parameters P(r|f), P(f|d) and P(d|c) in RCD in a single parameter P(r|c). 

The performance of RCD hinges on the accuracy of the estimate for P(r|c).  

As discussed in Chapters 3 and 4, P(r|f), P(f|d) and P(d|c) are estimated based on 

assumptions and domain knowledge of diagnosis scenarios and defect behavior of each 

root cause. 

P(r|f) is the probability of a given report when a specific fault in this report is true. 

Ideally, one fault should cause one failure file, such that the fault should have one specific 

diagnosis report. However, due to the complexity of designs and tests used, it is possible 

that some failure files do not match any fault. P(r|f) cannot be 0, which means the diagnosis 

report does not exist. To resolve this problem, one can remove such reports from the 

volume diagnosis reports. Due to complex design and un-modeled fault behavior, quite a 
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few diagnosis reports may have to be removed. Another alternative is to designate P(r|f) 

as less than 1 for faults included in the diagnosis report to indicate that they are close but 

not exact. To obtain the correct P(r|f) requires an understanding of the scoring systems 

used in diagnosis tools. Some diagnosis tools even have different score systems for 

different fault models. 

P(f|d) is the probability of a fault if a specific defect is true. This parameter requires 

an understanding of the relationship among logic faults and physical defects used in 

diagnosis tools. Due to logical equivalence, the same failure behavior we obtain from test 

pattern response could be explained as resulting from different individual defects. Such an 

explanation might vary by setting of diagnosis, and can include the score of each defect, 

root causes of defect, number of defects, etc. For one report, each possible defect site is 

considered a defect, and is scored by how well the observed behavior of the defective die 

matches the behavior explained by the fault model we applied in the diagnosis. For now, 

this probability is calculated based on that diagnosis score.  

P(d|c) is the probability of a defect if one of its root causes is true, and can be 

calculated based on how many defects are triggered by this root cause. This information 

can be derived from layout and defect behavior of each root cause. If a reported physical 

defect occurred because of a given root cause, there would then be at least one instance of 

that root cause associated with that physical defect. This is the defect occurring probability 

we described above.  

These three parameters are not perfectly accurate if defects have un-modeled faulty 

behaviors. And discrepancies thus exist between assumptions and real silicon data. One of 

discrepancies is between simulated defects and real silicon data. P(d|c) of both simulated 

defects and the original Bayesian model are based on critical area and count-based model. 

However, in reality, other factors might also contribute to occurrence of a defect. For 

example, the critical area of short defect between two long neighboring nets is large, but 

such a defect is less likely to occur if the manufacturing process at the new technology 
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node is improved. Based on domain knowledge of defect mechanisms, adaptation to new 

defect occurrence assumptions for P(d|c) can be achieved. However, this approach is not 

the focus of our work.  

The other discrepancy is between P(r|f) and P(f|d) of the real diagnosis process, 

and of Bayesian model assumption. Whenever an unmolded fault presents itself, problems 

can arise. However, current RCD parameters have shown effective robustness through 

previous successful use of RCD to identify interconnect, cell and layout-pattern root 

causes.  

Cells have a small number of input and output pins. Due to this feature, many 

defects within the cell corresponding to different root causes produce the same failing bits. 

This dynamic results in several root-cause candidates for a single diagnosis report, making 

it hard to distinguish them from each other. This is a much bigger issue for cell-internal 

root causes, as compared to interconnect root causes. Moreover, candidates corresponding 

to cell-internal root causes have lesser variability between reports in terms of 

shape/length/critical area, as compared to interconnect root causes. This exacerbates the 

problem of identifying cell-internal root causes. We illustrate this using Table 6-1. 

Table 6-1 Percentage of root causes experiencing high co-occurrence and domination 

 

Suppose we have a collection of diagnosis reports, where we know the real root 

cause (creal). If, in more than 85% of the reports in the above population, candidates 

 Root cause type Design B Design C Design D 

High co-occurrence & 

domination 

Interconnect 0 0 0 

Cell-internal 92% 46% 68% 
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belonging to a different root cause (cfake) also appear, we say that cfake has high co-

occurrence with creal. Moreover, if in at least 50% of the reports we find that P(r|cfake) is 

larger than P(r|creal), we can then say that cfake dominates creal. In Table 6-1, for several 

industrial designs, we show the percentage of interconnect and cell-internal root causes 

that become dominated by, and have high co-occurrence with, some other root cause. 

Thus, we need a more accurate estimate of P(r|c) in order to distinguish cell-

internal root causes using the RCD Bayesian model. Such improvement can be done by 

using domain knowledge, but that is not the focus of the work proposed in this chapter. In 

this work, we use supervised machine learning to accurately estimate P(r|c) for each report 

and root-cause combination. 

6.3 Supervised Machine Learning Techniques 

Supervised learning refers to the class of machine-learning algorithms that allow 

us to learn the mapping from inputs to outputs, based on a labeled training data set. A 

labeled dataset comprises example input and output pairs, where the “label” refers to the 

known output values. Over the last few years, machine learning in general, and supervised 

learning in particular, has been successfully applied in various new fields and has proved 

to be transformative [83]. The algorithm’s performance typically keeps improving as it 

sees more training data. Machine learning techniques often work very well in practice—

even with relatively small datasets and simple models, we see very good results.  

6.3.1 Feature Extraction 

One of the key steps that plays a big role in determining the success of a supervised 

learning algorithm is the choice of features. With a good choice of features, even simple 

algorithms may perform very well, whereas if the features are not very informative or 

discriminative, then even a complex learning algorithm will not be able to do a good job.  
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Supervised learning can be used for various tasks, such as regression and 

classification. In classification, the output can be one of several different categories or 

classes, and the task is to correctly predict the class for the given input value. 

6.3.2 Type of Classifiers 

Various types of classifiers are commonly used in machine learning. Some of these 

classifiers output only the predicted class. Popular classifiers such as Support Vector 

Machines (SVMs) and random forests fall in this category [85]. Although researchers have 

attempted to associate a probability with the output using these classifiers, the latter do not 

include a natural notion of a probability associated with each class. Another type of 

classifiers, such as logistic regression and naïve Bayes, naturally output a probability for 

each class. If we wanted to choose a single class, we would choose the class with the 

highest probability. However, we can also use the probability for other applications. In this 

paper, we are interested in the second type of classifiers, which output a probability 

associated with each class. We are using a linear transformation function which outputs the 

probability of each class based on the value of a linear combination of input features. Other 

techniques, such as logistic regression or native Bayes, can also be used as classifiers in 

our supervised learning framework, as long as the output of the classifier is assigning 

probability to each class. Investigating this possibility could be a direction for our future 

work. 

 

6.4 Our Use of Supervised Learning 

One approach to identify root causes is to go directly to the root-cause distribution 

using supervised learning. In such an approach, a single training data point would consist 

of an entire population of volume diagnosis reports as input, and the output would be a 

root-cause distribution. We would need a number of training data points for each root 

cause, where each data point itself consists of a population of diagnosis reports. This 
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method would require a large number of diagnosis reports for training. For example, 

suppose we need at least 200 diagnosis reports to obtain a root-cause distribution. These 

reports comprise a single training data point for the supervised learning approach described 

above. Further, suppose that we need at least 200 training data points per class (i.e. root 

cause) to learn a classifier. This requirement implies that we need at least 200*200=40,000 

diagnosis reports per root cause for training. If we have 50 root causes, we would need 

more than 50*40,000=2,000,000 diagnosis reports for training. Therefore, we consider this 

approach impractical. In the approach that we describe below, each data point consists of 

just a single diagnosis report. Continuing to use the assumptions stated here, we would 

need 200 diagnosis reports per root cause for training. Therefore, if there were 50 root 

causes present, we would need only 50*200=10,000 diagnosis reports for training. 

Our goal with supervised learning is to obtain an accurate prediction for P(r|c)—

the probability of a report, given a root cause. We use a custom classifier that takes a report 

as input and outputs an accurate estimate for P(r|c). Details of the classifier, i.e. the learning 

algorithm, are described in the following subsection. 

6.4.1 Training Data 

In supervised learning, one key assumption is that the distribution and 

characteristics of data in the test set are similar to those of the data in the training set. In 

other words, the training data should be a good proxy for the test data set. We generate 

training data using the following procedure:  

1. Compute the list of root causes in which we are interested. On each layer in a 

design, a short between two neighboring nets causes a bridge defect. A 

disconnected net causes an open defect. A missing via causes an open defect. 

The number of interconnect layers, via types and layers inside cells depends on 

the technology node of the manufacturing process. A list of candidate root 

causes should theoretically include all defined possible root causes of defects 
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on all layers in case a real root cause is missed. This list would typically consist 

of open and bridge root cause for each interconnect metal layer, open root cause 

for each interconnect via layer, open and bridge root cause for each layer inside 

the cell (e.g. contact to poly, contact to diffusion, metal layers, etc.), inter-layer 

bridge root causes within the cell. In proposed supervised learning, root causes 

of which the occurrence is quite small are excluded. 

2. For each of the root causes, we then compute the list of possible defects 

corresponding to that root cause.  

3. For each root cause, we compute the probability of each defect occurring.  

Depending on the root cause, we assume either that the probability of each 

defect is proportional to its critical area, or that each instance is equally likely. 

4. We now sample (with replacement) from the defect distribution for each root 

cause. Ideally, we want a data sample that captures most of the variability in 

terms of root-cause behavior and diagnostic tool behavior for the root cause. In 

general, we expect the results to be better as we increase the number of training 

data samples. For critical-area-based root causes, defect location is randomly 

chosen based on critical area of each defect instance. Defects with larger critical 

areas are more likely to be injected. For counted-based root causes, each 

location has some chance to be defective. The location of defect thereby is 

purely random. 

5. We simulate the behavior for each selected defect for the set of scan test 

patterns. All defects are injected on the logic-level netlist by changing the logic 

value on impacted signal lines and pins. Logic simulation is then applied on the 

faulty circuit for each defect. As a result of our simulation, we obtain the failure 

file for each defect. How to change the logic value depends on the fault model 

used. For interconnect bridge defects, AND/OR bridge fault and dominate 

bridge fault are chosen randomly in each injection. For interconnect open 
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defects, stuck at 0 and 1 fault are placed in a defective line and its downstream 

branches randomly. For cell-internal defects, the faulty logic values of cell pins 

are obtained by SPICE simulation on parasitic elements extracted from the 

layout inside a cell. To summarize, for injection of both types of defect, we use 

logic simulation based on defined fault models. Fault models of cell-internal 

defects are defined by SPICE simulation [21], [22] on defects inside cell. 

Defects inside cells are obtained by changing the value of resistor and capacitor 

in an extracted transistor netlist of one cell. The process variations are not 

considered. 

6. We run a state-of-the-art cell-aware diagnosis tool [22] to generate a diagnosis 

report for each failure file. Each diagnosis report is labeled by its injected root 

cause.  

7. For each diagnosis report, we calculate the probability of the report being 

generated by the root cause. We use the same calculation as in [77] and 

discussed in Chapters 3 and 4. We thus obtain a vector-per-diagnosis report 

with length equal to the number of root causes. This is the input for our learning 

algorithm.  

Our goal with supervised learning is to obtain an accurate prediction for P(r|c)—

the probability of a report, given a root cause. We use a custom classifier that takes a report 

as input and outputs an accurate estimate for P(r|c). Details of the classifier i.e., the learning 

algorithm, are described in the next subsection. 

6.4.2 Learning Algorithm 

The goal of our learning algorithm is to output an accurate estimate of P(r|c), i.e. 

the probability of a report, given a root cause. Consider two root causes, c1 and c2. The 

high-level idea behind our approach is that when the real root cause is c1, the diagnosis 

reports that are produced have certain common characteristics. These characteristics differ 
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from those of the reports that are produced when c2 is the real root cause. In the training 

phase, we obtain sample diagnosis reports for each root cause and try to determine 

characteristics that differentiate them from reports belonging to other root causes. 

In order to achieve the above goal, we propose learning a linear transformation, i.e. 

a matrix A, that transforms the input probabilities (inaccurate P(r|c)) to accurate 

probabilities. Let the original (inaccurate) P(r|c) vector be denoted by PO and the accurate 

P(r|c) vector be denoted by PA. The transformation is done as follows: 

𝑃𝐴 = 𝐴 ∗ 𝑃𝑂  

We denote the total number of root causes by N. In the above equation, PA and PO 

are vectors of dimension N. PO is equal to [𝑃𝑂(𝑟|𝑐1), 𝑃𝑂(𝑟|𝑐2), … , 𝑃𝑂(𝑟|𝑐𝑁)]
𝑇. PA is equal 

to [𝑃𝐴(𝑟|𝑐1), 𝑃𝐴(𝑟|𝑐2),… , 𝑃𝐴(𝑟|𝑐𝑁)]
𝑇. The nth entry in PO is equal to P(r|cn) where cn is the 

nth root cause. 

A is an N*N matrix. We further require that all entries in A should be non-negative. 

This requirement ensures that each entry in PA will be non-negative, since we know that 

each entry in PO represents a probability and is therefore non-negative. 

Intuitively, we try to learn the best representative for diagnosis reports generated 

by each root cause c. We believe that a representative of all diagnosis reports of one root 

cause c is more similar to diagnosis reports generated by same root cause c than the 

diagnosis reports generated by the other root causes. This belief is based on an assumption 

that defect behavior and diagnosis behavior of the same root causes under the same 

diagnosis procedure should hold some underlying characteristics. The learned 

representative captures the characteristics of diagnosis behavior from training data. The 

representative vector of the nth root cause is denoted as An, the nth row of the A matrix. Each 

representative vector provides a “typical” diagnosis report triggered by the nth root cause. 

We define the accurate P(r|c) based on how similar the report in question is to the 
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representative for root cause c. Each report in question is an input data point represented 

by its probability P(r|c) vector PO.  

We measure similarity as the dot product or inner product [76] of two vectors (Po 

and An). This similarity shows the likelihood that a given report is generated by the nth root 

cause.  

𝑃𝑂 ∙ 𝐴𝑛 =∑𝑃𝑜(𝑟|𝑐𝑖)

𝑁

𝑖=1

∗ 𝐴𝑛𝑖 = 𝑃𝑜(𝑟|𝑐1) ∗ 𝐴𝑛1 + 𝑃𝑜(𝑟|𝑐2) ∗ 𝐴𝑛2 +⋯+ 𝑃𝑜(𝑟|𝑐𝑁) ∗ 𝐴𝑛𝑁 

The higher the dot product, the more similar that report is to nth root-cause 

representative 𝐴𝑛, and the more likely its real root cause is the nth root cause 𝑐𝑛. So, we 

define this value as   𝑃𝐴(𝑐𝑛|𝑟), the probability that root cause 𝑐𝑛 is the true root cause given 

a report. By definition of conditional probability, 𝑃𝐴(𝑐𝑛|𝑟) can be expressed as follows: 

𝑃𝐴(𝑟|𝑐𝑛) =
𝑃𝐴(𝑐𝑛|𝑟) ∗ 𝑃(𝑟)

𝑃𝐴(𝑐𝑛)
 

In the current RCD model, we do not have an assigned prior probability of seeing 

each root cause   𝑃𝐴(𝑐𝑛). We also assumed that the probability of seeing each report 𝑃(𝑟) 

is the same. Therefore, the following approximation is established: 

𝑃𝐴(𝑟|𝑐) ∝ 𝑃𝐴(𝑐|𝑟) 

Strictly speaking, each entry   𝑃𝐴(𝑟|𝑐), in the vector PA is a proxy for the accurate 

value of P(r|c). The entry might be different from the true value of P(r|c); e.g., it might be 

larger than 1. However, each entry in PA will be proportional to the true P(r|c). For the 

purpose of the RCD algorithm, we need to know the probability P(r|c) up to a constant 

factor only. For the rest of the paper, to make the exposition simple, we will assume that 

𝑃𝐴(𝑟|𝑐) is equal to P(r|c). 

An alternative interpretation exists of A matrix. Each row of A, An is a set of 

weights applied on feature vectors of input points. For each ith feature, weight Ani indicates 

how important that feature is to the estimated P(r|c) of nth root cause. In our current 



www.manaraa.com

122 
 

 

approach, original P(r|c) is used as a feature. We know the value of original P(r|c) is not 

accurate. One example of inaccuracy is that P(r| interconnect open) is biased toward being 

higher than true when the real root cause is cell-internal. This bias results in interconnect 

open root causes dominating cell-internal root causes. By applying appropriate weights 

learned from training data on both P(r| interconnect open) and P(r| cell internal), we can 

boost probability of cell-internal while reducing the biased probability of interconnect 

open. 

For the training data, we know the injected root cause. Therefore, in order to 

achieve our goal of learning an accurate estimate of P(r|c), we want to learn a matrix A, 

such that for each report: i) the probability for the injected root cause, 𝑃𝐴(𝑟|𝑐𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑), is 

as high as possible; ii) the probability, 𝑃𝐴(𝑟|𝑐), for each of the other root causes is as low 

as possible. This second condition is very important. Without this condition, every entry in 

the matrix A will be infinity. The second condition is what constrains the matrix A, and 

leads to meaningful learning. In our approach, we formulate an objective function that 

expresses these conditions, and we try to find a matrix that maximizes the objective 

function. We describe our objective function in detail in the next section. 

6.4.3 Objective Function 

Let us denote 𝑃𝑂(𝑟|𝑐)  for the ith diagnosis report, and the nth root cause by 

𝑃𝑂(𝑟𝑖|𝑐𝑛). For the ith diagnosis report, the vector PO defined above is therefore equal to 

[𝑃𝑂(𝑟𝑖|𝑐1), 𝑃𝑂(𝑟𝑖|𝑐2),… , 𝑃𝑂(𝑟𝑖|𝑐𝑁)]
𝑇.  

In the training data set, each diagnosis report is labeled by the root cause of its 

injected defect. For each diagnosis report r, this root cause is denoted as 𝑐𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑. As stated 

in the previous section, our goal is to make, for each report, 𝑃𝐴(𝑟|𝑐𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑) as high as 

possible, and 𝑃𝐴(𝑟|𝑐) as low as possible for all the other root causes. We can achieve both 

goals by maximizing the ratio of 𝑃𝐴(𝑟|𝑐𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑) and the sum of 𝑃𝐴(𝑟|𝑐) for all root causes 

c. Note that maximizing this ratio for reports belonging to one root cause can make this 
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ratio bad for reports belonging to some other root cause. Therefore, we need to consider all 

the diagnosis reports belonging to the various injected root-cause populations 

simultaneously.  

One possible objective function is to simply sum up this ratio for all diagnosis 

reports and maximize it. However, this is not a good choice. Consider two reports whose 

ratio is R1 and R2. R1=1 and R2=0 is better in terms of objective function value (since it 

has a higher sum) than R1=0.5 and R2=0.49. For our application, we want the right root 

cause to be dominant for as many reports as possible. Therefore, a much better choice is 

the product of the ratio for all reports, as expressed by 𝑓(𝐴′) below. 

𝑓(𝐴′) =∏∏
𝑃𝐴(𝑟𝑛𝑖|𝑐𝑛)

∑ 𝑃𝐴(𝑟𝑛𝑖|𝑐𝑚)
𝑁
𝑚=1

𝑆𝑛

𝑖=1

𝑁

𝑛=1

 

=∏∏
∑ 𝐴𝑛𝑗 ∙ 𝑃𝑂(𝑟𝑛𝑖|𝑐𝑗)
𝑁
𝑗=1

∑ ∑ 𝐴𝑚𝑗 ∙ 𝑃𝑂(𝑟𝑛𝑖|𝑐𝑗)
𝑁
𝑗=1

𝑁
𝑚=1

𝑆𝑛

𝑖=1

𝑁

𝑛=1

 

However, another factor that needs to be considered is training data size. If the 

numbers of diagnosis reports for different labeled root causes differ too much, it is possible 

that the matrix we learn is biased towards the root cause with a larger number of diagnosis 

reports. One way to solve this is to make sure that the number of diagnosis reports for each 

root cause are exactly the same. However, it is possible that for some root causes we have 

more training data. Having this restriction would mean that we need to discard some reports 

from the training data set. To alleviate this concern, and to give each root cause an equal 

emphasis, we assign a weight to each diagnosis report. The weight is inversely proportional 

to the number of reports for a given root cause. Note that all the diagnosis reports belonging 

to the same injected root cause have the same weight. We denote this as 𝑤𝑛 for reports 

belonging to the nth root cause. 

𝑤𝑛 =
1

𝑆𝑛
 

where 𝑆𝑛 is the number of diagnosis reports in the training data set for the nth root cause. 
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Putting this all together, our objective function 𝑓(𝐴) takes the following form: 

𝑓(𝐴) =∏∏(
𝑃𝐴(𝑟𝑛𝑖|𝑐𝑛)

∑ 𝑃𝐴(𝑟𝑛𝑖|𝑐𝑚)
𝑁
𝑚=1

)

𝑤𝑛
𝑆𝑛

𝑖=1

𝑁

𝑛=1

 

=∏∏(
∑ 𝐴𝑛𝑗 ∙ 𝑃𝑂(𝑟𝑛𝑖|𝑐𝑗)
𝑁
𝑗=1

∑ ∑ 𝐴𝑚𝑗 ∙ 𝑃𝑂(𝑟𝑛𝑖|𝑐𝑗)
𝑁
𝑗=1

𝑁
𝑚=1

)

𝑤𝑛𝑆𝑛

𝑖=1

𝑁

𝑛=1

 

where the first product goes over all the root causes, and the second product goes over all 

the diagnosis reports present in population 𝑆𝑛. 𝑟𝑛𝑖 is the ith diagnosis report in population 

𝑆𝑛. 𝐴𝑛𝑗 is the entry in the jth column of the nth row of matrix A. 

𝑓(𝐴) denotes the value of the objective function evaluated at the matrix A. In the 

training phase, our goal is to find the matrix A that maximizes 𝑓(𝐴). 

With the learnt A matrix, the transformed output 𝑃𝐴  of our supervised learning 

approach is a more accurate estimate of P(r|c), and this feeds into the RCD algorithm. The 

objective function in RCD unsupervised learning is the likelihood of diagnosis reports, 

which is the product of the probability of each report. Thus, our choice of objective function 

also bears resemblance to the objective function for RCD. 

To maximize the objective function, we use a very popular off-the-shelf optimizer 

using the Limited-memory BFGS (L-BFGS-B) algorithm [84]. 

6.5 Experiment Setup 

Four industrial designs are used to validate our methodology. Designs B, C, and D 

are for advanced technology nodes using FinFETs. For each design, the number of 

predefined root causes varies (Table 6-2). In this paper, we sample 200 defects for each 

root cause for the training data set, and another 200 defects for the test data set. We choose 

the number 200. Ideally, we want to have as many training data as possible. However, 

creating a large amount of training data involves expensive simulation. Therefore, it is 

necessary to find a data size that balances the tradeoff between practical cost and 

effectiveness. The effectiveness of using 200 injected defects as training data is validated 
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by our experiment results. It shows a sample of this size captures most of the variability in 

terms of root-cause behavior and diagnostic tool behavior for the root cause. 

Table 6-2 Number of predefined root causes per design 

Design A B C D 

number of interconnect root causes  13 34 23 17 

number of cell-internal root causes 9 14 24 19 

For each design, training data and testing data are created as described in Section 

6.4. Recall that we create a population of diagnosis reports for each root cause for training, 

and a separate population for testing. For training, we combine the populations across 

different root causes, since we are learning a single matrix and all the diagnosis reports are 

part of the objective function. For testing, we keep each population of reports 

corresponding to a separate injected root cause. Thus, we have as many test cases as the 

number of root causes. The root-cause distribution for each testing population is, by 

construction 100%, for the injected root cause. During testing, we first apply the learnt A 

matrix on the vector PO. Recall that vector PO consists of P(r|c) derived from the diagnosis 

reports. We then obtain the vector PA, which is a more accurate estimate for P(r|c). The 

collection of vectors PA, corresponding to each report in the population, is then fed to the 

RCD algorithm to determine the root-cause distribution. 
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Figure 6-1 Flow chart of RCD using supervised learning for parameter estimation 

The flow chart of RCD using model parameter estimated by supervised learning is 

shown in Figure 6-1. The only difference is the dash block. We replace the root-cause 

information extraction step in Figure 3-3 with a supervised learning step. In the supervised 

learning step, training data are created separately. The output of supervised learning block 

will be feed into Bayesian model-building as an input, and unsupervised RCD learning will 

then be applied based on that. 

In the following discussion, the root-cause distribution obtained based on the 

original P(r|c) from the diagnosis reports is tagged as baseline. The root-cause distribution 

obtained by using the corrected values of P(r|c) based on our approach is denoted as the 

new method. Root-cause distribution obtained by RCD is termed the RCD result. We have 

a test case for each injected root cause in the design. For each given test case, we check the 
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probability of the injected root cause in the RCD result and define it as the accuracy of that 

test case.  

6.6 Experiment Result 

Success rate of proposed method and baseline method for cell internal cases and 

interconnect root causes are shown in Table 6-3 and Table 6-4.  Success rate are calculated 

by averaging accuracy of all test cases in that design. For example in Table 6-3, for baseline 

method, average accuracy of all 13 test cases for cell internal root causes is 46%. For the 

baseline method, the success rate for cell-internal root causes is much lower than that for 

interconnect root causes. Our method substantially improves the success rate for cell-

internal root causes for all four designs, and the success rate for interconnect root causes 

are comparable with baseline method.  

Table 6-3 Success rates for cell internal root causes 

Design A B C D 

Baseline 46% 20% 54% 29% 

New method 87% 78% 77% 89% 

Table 6-4 Success rates for interconnect root causes 

Design A B C D 

Baseline 80% 97% 92% 86% 

New method 83% 97% 90% 84% 

We present detailed results regarding cell-internal root causes in Figure 6-2a. Each 

set of bars represents a test case created by injecting defects for the root cause shown at the 

base of the bar. The height of the bar represents the probability of seeing the injected root 
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cause in the root-cause distribution output by RCD (RCD pareto). For example, let us 

consider the test case where we inject the root cause Cell_Bridge_1 in Design B. If we use 

the baseline method, in the RCD pareto Cell_Bridge_1 accounts for only about 10% of the 

probability. If we use the new method that we propose, Cell_Bridge_1 is the only root 

cause in the RCD pareto, and accounts for 100% of the probability. For these injected cases, 

the higher the bars are, the better it is. As shown, accuracy of cell-internal root causes have 

been greatly improved, except some cases in design C.  

Detailed results for interconnect root causes are presented in Figure 6-2b. Even 

given the already high accuracy of RCD on interconnect root causes using the baseline 

method, improvements can still be achieved by the proposed method in some cases.  

 

 

(a) 



www.manaraa.com

129 
 

 

 

 

(a) 

(a) 



www.manaraa.com

130 
 

 

 

 

(a) 

(b) 



www.manaraa.com

131 
 

 

 

 

(b) 

(b) 



www.manaraa.com

132 
 

 

 

Figure 6-2 (a) Accuracy of cell-internal root causes; (b) Accuracy of interconnect root 
causes 

In the following discussion, we will explain why the proposed method works well, 

and the reason its accuracy is lower for some cases.  

Why does the approach work so well for cell internal root causes? We injected a 

cell-internal open root cause and generated a number of diagnosis reports for it using the 

approach detailed in the previous section. Figure 6-3a plots the P(r|c) for the injected cell-

internal root cause (in blue), the lowest interconnect metal layer open (in green), and the 

lowest interconnect via layer (in red). The diagnosis reports are sorted by P(r|c) for the 

injected root cause. Ideally, we would like the P(r|c) for the injected root cause to be very 

high, and the P(r|c) to be very low for all other root causes. However, we see that with the 

original P(r|c), for almost all reports, the P(r|c) for the interconnect open and via layer is 

higher than the P(r|c) for the real root cause. Given this behavior, it is no surprise that RCD 

results show a bias towards interconnect root causes, even when the injected root cause is 

cell-internal. One reason for such bias is that interconnect open defects are more 

(b) 
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complicated to model than bridge defects. Diagnosis algorithm has looser criteria to call 

out an open fault. Therefore, P(r|f) of  a report produced by a non-interconnect-open defect 

will be more inaccurate because a fake interconnect open fault is more likely to be called 

out by diagnosis. This observation leads to the conclusion that when a cell-internal root 

cause is injected, P(r|c) of interconnect open root cause is also very strong. In Figure 6-3b 

we show the value of P(r|c) for the same root causes, after transformation using our learnt 

A matrix. We see that now P(r|c) of injected root cause is higher for almost all diagnosis 

reports. As a result, RCD is able to easily identify the correct root cause. 

 

Figure 6-3 (a) Original P(r|c) per report; (b) P(r|c) per report after transformation by 
learnt A 

Why does the approach work poorly for some cell-internal cases? As shown in 

Figure 6-2a, the proposed method produces worse results than the baseline for 

Cell_Open_5, Cell_Open_6 and Cell_Open_7 in design C. We will use Cell open 5 as 

example to explain the reason. 

For Cell open-5, though the baseline result is good, it is biased by inaccurate P(r|c). 

As mentioned in Table 6-1, a cell-internal root cause could have high co-occurrence with 

another root cause or root cause group and be dominated by other root causes. We can call 
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them a pair or group of co-occurrence and dominating root causes. RCD results for such a 

group would always be biased to the dominating root cause. For example, Cell_Open_1 

and Cell_Open_5 always occur together in the population when either of them is the true 

root cause. The original P(r|c) of Cell_Open_5 is slightly higher than the original P(r|c) of 

Cell_Open_1 in every report of either Cell_Open_1 or Cell_Open_5. Therefore, the 

baseline result of Cell_Open_5 has high accuracy. The result of Cell_Open_1 is bad 

because it is dominated by not only Cell_Open_5 but also by other root causes. Based on 

original P(r|c), these two root causes cannot be distinguished with a limited sample size. 

However, assigning high probability to a dominant root cause such as Cell_Open_5 is 

misleading for understanding the underlying distribution. Instead of doing that, the 

proposed method tries to distinguish such root causes by using the P(r|c) of all the other 

root causes. It learns a representative of Cell_Open_1 that can have high similarity with 

reports of Cell_Open_1. The proposed method boosts Cell_Open_1. Since Cell_Open_1 

and Cell_Open_5 have high co-occurrence, a representative of Cell_Open_5 would also 

have some similarity with report of Cell_Open_1. Therefore, the proposed P(r|c) of 

Cell_Open_1 for Cell_Open_5 report is boosted. The accuracy of the RCD result for 

Cell_Open_5 decreases accordingly.   

Generally, the objective function of our approach is to optimize a matrix that is a 

set of reports representative of all root causes. The goal of optimization is make all P(r|c) 

for correct root causes high, and those for wrong root causes low. If the features (inaccurate 

original P(r|c)) do not provide enough distinguishable information, input reports from two 

different root causes may be quite similar. Accordingly, representatives of one of the two 

similar root causes would have some similarity to the other root cause. To achieve the goal 

of objective function, the learned representative needs to consider the trade-off between 

getting higher P(r|c) when it is the true root cause and lower P(r|c) when it is not. 

Ultimately, it is possible that the value of learned P(r|c) of these two root cause will be 

close, and the probability of true root causes in RCD results will be shared among those 
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two. Furthermore, such similar behaviors of different root causes do not necessarily occur 

only between two root causes, but might occur in a group of root causes.  

Overall, there is a need to improve our techniques for distinguishing such similar 

root-cause group. Such improvement can be achieved by increasing features, using a non-

linear classifier and increasing sample size.   

Why the results are for some interconnect open cases worse using the proposed 

method? As shown in Figure 6-2b, results of interconnect open and via on root cause are 

worsen in some case with proposed method. One example is Open_8 in design C. As shown 

in Figure 6-2b, the accuracy of the new method (blue bar) drops 33% compared to the 

accuracy of the baseline method (green bar). In the distribution obtained by the new 

method, 31% probability is assigned to 5 different cell-internal root causes. By contrast, 

distribution obtained by baseline assigns 0% probability to any cell-internal root cause. 

Among those cell-internal root causes, Cell_Bridge_3 takes 14% probability. Looking at 

Figure 6-2a, one can see that the accuracy of Cell_Bridge_3 increases from 5% to 77% 

when we use the proposed method. In baseline distribution of Cell_Bridge_3, Open_8 is 

assigned 46% probability. This result shows how inaccurate the original P(r|c) of Open_8 

in the population of Cell_Bridge_3.This also fits the analysis earlier in Section 6.2 as to 

why P(r|c) is not accurate. Open defects are harder to model compared to bridge defects. 

Therefore, the current diagnosis algorithm has looser constraints on including open faults 

in reports. This leads to a less accurate P(r|f) when the real root cause is not open on 

interconnect. A learned representative of open root cause might show more similarity to 

reports of non-open root cause, compared to the other way around. The estimated P(r|c) of 

open root cause is downgraded, and the accuracy of RCD results for interconnect open 

cases decreases accordingly. 

An Optional measurement: To improve yield, yield engineers need to identify the 

root cause of systematic defects in a short turnaround time. RCD results from volume 

diagnosis assign probability to each possible root cause. The probability provides 
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information as to how much each root cause contributes to fail the population. Such 

information gives guidance to failure-analysis experts in selecting the most likely candidate 

root causes for further analysis. Then, based on the picked candidate root cause, the 

probability of each die being defective due to that root cause is calculated. A most likely 

die will be selected for PFA. Therefore, a root cause with higher probability will provide 

more confidence and clearer information in this decision process.  

For cell-internal root cause, root causes on adjacent layers usually have high co-

occurrence. This means the diagnosis report will always call out layers next to the layer 

where real defect occurs. Statistically, such pairs or group of root causes behave quite 

similarly and are difficult to be distinguished. Rather than assigning probability only to real 

root cause, RCD gives probability to other root causes that are highly correlated to real 

one. For the above reason, we saw that probability of true root cause might not be dominant 

in the distribution. One example is a distribution of 30% layer 1, 30% layer 2 and 40% 

layer 3. The correct root cause is layer 1. Layer 2 is its adjacent layer. If we look at 

probability of only a single layer, layer 3 is the mostly likely root cause. If we go directly 

to layer 3, the defect will not be found. Since we know adjacent layers of cell-internal root 

causes are frequently called out together and share the probability in distribution of RCD, 

we can combine the probability for layer 1 and layer 2 and get 60% probability for layer 1 

and layer 2. This means it is more likely that either layer 1 or layer 2 are defective than that 

only layer 3 is defective. This information gives yield experts the option of considering 

that the real root cause could be either layer 1 or layer 2. With that being said, the goal of 

RCD is still to accurately pinpoint each single true layer by assigning a probability 

reflecting the underlying distribution. The effectiveness of our proposed method needs to 

be and has been validated by the accuracy of RCD result considering only a single layer. 

However, adjacent-layer measurement is an optional loose measurement that could be 

useful for PFA with lower resolution. 
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For a few root causes, such as Cell_Bridge_9 in design C, we see that although the 

supervised learning approach performs better than baseline method, it is still have a relative 

low accuracy (< 40%). This means in the RCD result, it might not be the dominating root 

cause. It turns out that in addition to Cell_Bridge_9, we call out another layer, while 

preserving the behavior (i.e. we correctly identify it as a bridge). Both layers are next to 

each other in the process stack and almost always occur together in the diagnosis report. 

As long as we identify the right fail mode (or failing behavior) on the layer close to the real 

defect, such a result is still a meaningful signal that can guide failure analysis and yield 

improvement. Therefore, we use “adjacent-layer success rate” as a less precise but more 

tolerant measurement showing the improvement of proposed method over baseline. We 

show the contribution of adjacent layers in Figure 6-4 by stacking them in yellow on top 

of the bars for the injected root cause. Results show that with less precise measurement, 

the proposed method is still much better than the baseline method. 
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Figure 6-4 Accuracy of cell-internal root causes with adjacent layer measurement 

6.7 Result on Silicon Data 

In this section, we used the silicon data of Design D to validate the proposed 

method. We applied the method on silicon fail data and validated result of RCD analysis 

by PFA results. Overall, we achieved a 71% hit rate among 21 PFA cases using the new 

method. Using the baseline method (RCD without learning), a 42% hit rate is obtained.  

Before describing the validation experiment on silicon data, we discuss how RCD 

is used in volume diagnosis based root cause identification procedure. Given a set of 

volume diagnosis reports of failing dies, yield experts choose a target root cause they are 

most interested in to investigate. RCD estimates a root cause probability distribution of 

given volume diagnosis reports. This distribution assigns probability to each possible root 

cause. The probability provides information as to how much each root cause contributes to 

failing population. Such information gives guidance to failure-analysis experts in selecting 

the most likely candidate root causes for further analysis. Other than selecting the top root 
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cause in the probability distribution, sometimes yield expert will instead select second 

highest root cause if the top one has been confirmed as a known root cause. Sometimes, 

they have information of a specific root cause from other tests and select it as a candidate 

root cause. After the candidate root cause is selected, the probability of each die being 

defective due to that root cause is calculated based on RCD result. Dies with highest root 

cause probability for the target root cause will be selected for PFA. 

In our validation experiment, we used 21 dies which have confirmed root cause 

information from PFA. These dies are from 3 different wafers of design D. They are 

selected following the above general criteria. To compare the effectiveness of baseline 

method and the new method, we use the hit rates as a measurement.  

The definition of a hit is given next. Firstly, root cause distribution of a wafer is 

estimated by RCD using diagnosis reports of failing dies of a wafer. In our experiment, the 

number of failing dies for volume diagnosis were 226, 222 and 1805 for wafers A, B and 

C, respectively. Then, based on the root cause distribution and P(r|c) of each die, 

probability of a die being defective due to each root cause is calculated. For each die, a root 

cause is defined as RCD-predicted root cause if it has the top probability to cause the defect 

on that die. If the RCD-predicted root cause causes the failure confirmed by PFA, we call 

it a hit. Hit rate is the ratio of hit over all 21 dies used in the experiment. Thus, the larger 

the hit rate of a method, the more effective that method is.  

In the above calculation of hit rates, baseline method uses original P(r|c) and the 

proposed method uses the new P(r|c). As presented in Section 6.6, an A matrix learned is 

from 200 training data for design D. For each die, new P(r|c) of 17 interconnect root causes 

and 19 cell internal root causes for each of the defective die are calculated using learned A 

matrix. 

As shown in Table 6-5, for wafer B, 10 defective dies are provided. Root cause of 

die 9 (Die id =9) confirmed by PFA is Cell Short contact. Root cause predicted by new 
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method is Cell short contact but by baseline method it is interconnect Open 1. Therefore, 

it is counted as a hit for the new method and a miss for the baseline method.  
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Table 6-5 Comparison of RCD top root cause vs. PFA results. W id stands for Wafer id. 
Interconnect is abbreviated to Inter. 

Die id W id 

RCD root cause 

(New) 

RCD root cause 

(Baseline) PFA root cause 

Result  

(New) 

Result  

(baseline) 

1 A Cell Open 1 Cell Open 1 Cell Open 1 Hit Hit 

2 A Cell Open 1 Cell Open 1 Cell Open 1 Hit Hit 

3 A Inter. Short 2 Inter. Short 2 Inter. Short 2 Hit Hit 

4 A Cell Open 3 Inter. Via 1 Cell Open 1 Miss Miss 

5 B Inter. Short 1 Inter. Short 1 Cell Short contact Miss Miss 

6 B Inter. Open 1 Inter. Open 1 Cell Short contact Miss Miss 

7 B Cell Short 3 Inter.  Open 1 Low level defect Miss Miss 

8 B Inter. Open 4 Inter.  Via 3 Inter. Open 4/Via3 Hit Hit 

9 B Cell Short contact Inter. Open 1 Cell Short contact Hit Miss 

10 B Inter. Open 1 Inter. Open 1 Cell Short contact Miss Miss 

11 B Cell/Short contact Cell Short contact Cell Short contact Hit Hit 

12 B Inter. Open 1 Inter. Open 1 Cell Short contact Miss Miss 

13 B Cell Short contact Cell Short contact Cell Short contact Hit Hit 

14 B Inter. Open 3 Inter. Open 3 Inter. Open 3 Hit Hit 

15 C Cell Open 2 Inter. Via 1 Cell Open 4 Hit Miss 

16 C Cell Open 2 Inter. Via 1 Cell Open 4 Hit Miss 

17 C Inter. Short 2 Inter. Short 2 Inter. Short 2 Hit Hit 

18 C Cell Open 2 Inter. Via 1 Cell Open 4 Hit Miss 

19 C Cell Open 2 Inter. Via 2 Cell Open 4 Hit Miss 

20 C Cell Open 2 Inter. Via 1 Cell Open 4 Hit Miss 

21 C Inter. Short 2 Inter. Short 2 Inter. Short 2 Hit Hit 
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Figure 6-5 describes the RCD pareto for Wafer C. Blue bar represents the results 

of new method. Red bar represents the result of baseline result.  

For new method, OPEN_1 and CELL_OPEN_2 are the top root causes in 

distribution. OPEN_1 had prior silicon confirmation and did not require further PFA. The 

CELL_OPEN_2 samples were identified by PFA as CELL_OPEN_4. On further 

investigation, cell-internal layer 2 and layer 4 are directly connected to each other and 

inseparable. Also, the failure is prominent only at the interface of layer 2 and layer 4; hence 

we considered them a match. The PFA finding for one CELL_OPEN_2 sample is shown 

in Figure 6-6 below.  

For baseline method, VIA 1, OPEN 1 and VIA 2 are the top three root causes in 

distribution. Baseline RCD-predicted root causes of 5 out of 7 dies from wafer C are either 

VIA1 or VIA2. All 5 PFA cases are considered miss. This shows the improvement from 

the new method.  

 

 

Figure 6-5 Root-cause distribution output by RCD for wafer C using the new method and 
baseline method  
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Figure 6-6 PFA result highlighting CELL_OPEN between layer 2 and layer 4 

These silicon data results boost our confidence in the proposed supervised RCD 

methodology for yield learning and fast ramping up of advanced technology nodes. 

6.8 Conclusion 

In this chapter, we present a novel approach to root-cause identification using 

volume diagnosis. Our method relies on supervised machine learning to more accurately 

estimate the parameters for the Bayesian model used in RCD [48], [77]. We show that 

using our approach we are able to accurately identify both cell-internal and interconnect 

root causes. We present results on several industrial designs for advanced technology 

nodes, and also present results on real silicon that validate our approach and prove its 

effectiveness for root-cause identification. 
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CHAPTER VII 

CONCLUSION  

7.1 Conclusion 

For yield improvement, identifying root causes of systematic defects in a short time 

is crucial. DDYA techniques such as RCD identify the common root cause by analyzing a 

large amount of volume diagnosis data, using much less time and resource than PFA. RCD 

estimates root cause probability distribution by learning from volume diagnosis data. Root 

cause probability distribution can also help reduce diagnosis ambiguity for single dies, and 

narrow the scope of the candidate defect sites for PFA. RCD consists of two parts: 1. 

Building a Bayesian net modeling the distribution of defects given each candidate root 

cause. The parameter of Bayesian model is estimated based on domain knowledge. 2. 

Unsupervised learning for most likely root cause distribution on volume diagnosis. MLE 

is used with EM to obtain the optimal distribution.  

RCD has been proved to be effective for interconnect root causes [44], [48], [49]. 

In the context of advanced technologies, as the feature size of layout shrinks aggressively 

and process procedure of the library cell gets more complex, identifying the emerging new 

root causes with limited and complex diagnosis data becomes challenging. Those new root 

causes include, but are not limited to, layout pattern root cause (certain prone to fail layout 

shapes) and cell internal root causes. The relevant challenges are as follows: Firstly, how 

to model a new root cause and feed it into existing model and flow. Secondly, how to 

handle characteristics of new root causes, such a large number of types or high co-

occurrence with each other. Lastly, to overcome these challenges to RCD, improvement 

based on better understanding of the RCD is desired.  

To better understand and evaluate possible issues with the RCD model, Chapter 4 

proposed a card game model to create controllable diagnosis data with various diversities. 

With complete information of diagnosis data created by the card game model, issues of 
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inaccurate Bayesian model parameters and limited sample size can be separated and 

evaluated individually. Various scenarios of diagnosis data are created. Given an accurate 

model parameter, the impact from limited sample size on RCD is evaluated. The proposed 

cross validation is shown to effectively alleviate overfitting brought about by limited 

sample size under various scenarios. Issues in volume diagnosis are further discussed using 

card game data as a reference. 

Chapter 5 addresses the challenge of identifying layout pattern root cause in RCD 

by enhancing RCD flow with a step for automatic layout pattern extraction. Comparing to 

existing methods [51], [53], [54], RCD can filter out layout patterns that are unlikely to be 

defective, group shifting layout patterns, and handle equivalent layout patterns. All of 

above help reduce the chance of overfitting in results given the huge number of layout 

pattern types. The control experiment shows that RCD identifies injected layout pattern 

root cause successfully with high accuracy. For injected non-layout pattern root cause, 

RCD can identify them correctly, though some accuracy is sacrificed. Ultimately, the 

effectiveness of an enhanced RCD flow that identifies layout pattern is validated by PFA 

results of silicon data. 

Chapter 6 shows the impact on a Bayesian model of RCD of including cell internal 

root causes. The estimated parameter of the Bayesian model need to be fixed to obtain an 

accurate RCD result. A supervised learning method is proposed to find a more accurate 

RCD result. With the new estimated parameter, the RCD result for injected cell internal 

root causes is improved greatly, while the result for injected interconnected root causes still 

retains high accuracy. Silicon PFA results from an industrial design confirm the 

effectiveness of the proposed method. 

7.2 Future Work 

The research work proposed in this thesis successfully addresses the challenge from 

layout pattern root cause and cell-internal root causes. These research points toward the 
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effectiveness of supervised learning for model parameter estimation, and provides a vehicle 

to generate diagnosis reports for future investigation. Further research on card game model 

and supervised learning flow can be extended with more capabilities.  

Card game model: Currently we assume a simplified diagnosis scenario, in which 

there is single suspect and multiple root causes for each diagnosis report and all reports are 

correct. To mimic a more complex diagnosis scenario, one could make several changes to 

the card game setting. Multiple suspects per diagnosis report can be mapped to a card game 

by recording more than one card numbers. Wrong diagnosis reports can be mimicked by 

writing down a wrong card number. Other than that, certain assumptions can be made when 

creating candidate card decks for mapping the correlated root cause set and dominant root 

cause set. Furthermore, the impact of different fault models on diagnosis can be mapped as 

setting different probabilities of seeing a specific card drawn from a given deck for different 

types of card decks. Depending on which problem we want to investigate, the card game 

model can be quite flexible in creating diagnosis data, with few limitations on resources. 

Supervised learning on parameter estimation: While we obtained good results for 

both cell internal and interconnect root causes, there are several avenues to explore to 

further improve our accuracy.  

In the current work, we use a matrix to transform the input features and obtain a 

more accurate estimate of P(r|c). This is a simple linear classifier. We could explore the 

benefit of using a non-linear classifier, or obtaining a non-linear classification boundary 

using techniques such as the kernel trick [85]. We could also consider popular classifiers 

used in machine learning, such as SVM, random forests etc., and explore how they can be 

adapted for our problem. One challenge is that classification is only the first step of our 

approach. The output of the classification step serves as the input to RCD, which results in 

a root cause distribution, which is our ultimate goal. So, any classifier that we employ must 

take the RCD objective function into account and produce estimates that are meaningful as 

inputs for RCD.  
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Currently, we only use the probability of a report given a root cause as features. We 

can easily extend our approach to consider other features in addition to the existing 

features. Using more features should result in a better classifier. 

One of the drawbacks of our approach is that it requires training for each root cause. 

This makes it prohibitively expensive when we consider root causes such as layout 

patterns, which might number in the millions. One way to alleviate this problem is by 

considering a hierarchical classifier. In the first step, we could broadly classify root causes 

as layout patterns vs non-layout patterns, or into other groups that we wish to treat 

differently. With root causes classified in this way, after the first step, we would know the 

probability that a given die is failing due to layout patterns being a root cause and vice 

versa. In the second step, we could have different classifiers for each category. We could 

use an unsupervised learning algorithm for layout patterns, considering layout patterns only 

as root causes. For interconnect and cell internal root causes we could use the approach 

outlined in this thesis. 
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